2个回答
展开全部
两曲线交点:(-2,2)、(2,2)
x^2+y^2=8
y=√(8-x^2)
∵两曲线均关于y轴对称
∴一部分面积:S1=2∫(0,2)[√(8-x^2)-1/2x^2]dx
=2∫(0,2)√(8-x^2)dx-∫(0,2)x^2dx
=-1/3x^3|(0,2)
注:2∫(0,2)√(8-x^2)dx
令x=2√2sint
t=arcsinx/(2√2)
t1=arcsin0/(2√2)=0
t2=arcsin2/(2√2)=π/4
dx=2√2costdt
2∫(0,2)√(8-x^2)dx
=2∫(0,π/4)2√2cost(2√2cost)dt
=8∫(0,π/4)(1+cos2t)dt
=8t|(0,π/4)+4∫(0,π/4)cos2td(2t)
=8(π/4-0)+4sin2t|(0,π/4)
=2π-4(sin2π/4-sin0)
=2π-4
圆面积:S=2π×8=16π
另一部分面积:S2=S-S1
=16π-(2π-4)
=14π+4
x^2+y^2=8
y=√(8-x^2)
∵两曲线均关于y轴对称
∴一部分面积:S1=2∫(0,2)[√(8-x^2)-1/2x^2]dx
=2∫(0,2)√(8-x^2)dx-∫(0,2)x^2dx
=-1/3x^3|(0,2)
注:2∫(0,2)√(8-x^2)dx
令x=2√2sint
t=arcsinx/(2√2)
t1=arcsin0/(2√2)=0
t2=arcsin2/(2√2)=π/4
dx=2√2costdt
2∫(0,2)√(8-x^2)dx
=2∫(0,π/4)2√2cost(2√2cost)dt
=8∫(0,π/4)(1+cos2t)dt
=8t|(0,π/4)+4∫(0,π/4)cos2td(2t)
=8(π/4-0)+4sin2t|(0,π/4)
=2π-4(sin2π/4-sin0)
=2π-4
圆面积:S=2π×8=16π
另一部分面积:S2=S-S1
=16π-(2π-4)
=14π+4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询