3个回答
展开全部
2.=lime^[lnx/ln(e^x-1)]=lime^[(1/x)/(e^x/(e^x-1))]
=lime^[(e^x-1)/(xe^x)]=e
5.=lim[1+2/pi*arctanx-1]^x
=e^lim[x(2/pi*arctanx-1)]
=e^lim[(2/pi*arctanx-1)/(1/x)]
=e^lim[2/pi*(1/(1+x^2))/(-1/x^2)]
=e^lim[-2/pi*(x^2/(1+x^2))]
=e^(-2/pi)
=lime^[(e^x-1)/(xe^x)]=e
5.=lim[1+2/pi*arctanx-1]^x
=e^lim[x(2/pi*arctanx-1)]
=e^lim[(2/pi*arctanx-1)/(1/x)]
=e^lim[2/pi*(1/(1+x^2))/(-1/x^2)]
=e^lim[-2/pi*(x^2/(1+x^2))]
=e^(-2/pi)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2)
lim(x->0+) x^[ 1/ln(e^x-1)]
= lim(x->0+) e^[lnx/ln(e^x-1)] (∞/∞ 分子分母分别求导)
= lim(x->0+) e^{ (1/x)/[e^x/(e^x-1)] }
= lim(x->0+) e^[ (e^x-1)/(x.e^x) ] (0/0 分子分母分别求导)
= lim(x->0+) e^{ e^x/[(1+x).e^x) }
=e^1
=e
(3)
ans :B
lim(x->+∞) x[π/2 -arctanx]
=lim(x->+∞) [π/2 -arctanx] /(1/x) (0/0 分子分母分别求导)
=lim(x->+∞) [-1/(1+x^2)] /(-1/x^2)
=lim(x->+∞) x^2/(1+x^2)
=1
(5)
L =lim(x->+∞) [( 2/π) arctanx ]^x
lnL
=lim(x->+∞) ln[( 2/π) arctanx ]/ (1/x) (0/0 分子分母分别求导)
=lim(x->+∞){ 1/[(1+x^2).arctanx ] }/ (-1/x^2)
=lim(x->+∞) -x^2/[(1+x^2).arctanx ]
=lim(x->+∞) -x^2/(1+x^2). lim(x->+∞) (1/arctanx)
=-2/π
L = e^(-2/π)
lim(x->+∞) [( 2/π) arctanx ]^x = e^(-2/π)
lim(x->0+) x^[ 1/ln(e^x-1)]
= lim(x->0+) e^[lnx/ln(e^x-1)] (∞/∞ 分子分母分别求导)
= lim(x->0+) e^{ (1/x)/[e^x/(e^x-1)] }
= lim(x->0+) e^[ (e^x-1)/(x.e^x) ] (0/0 分子分母分别求导)
= lim(x->0+) e^{ e^x/[(1+x).e^x) }
=e^1
=e
(3)
ans :B
lim(x->+∞) x[π/2 -arctanx]
=lim(x->+∞) [π/2 -arctanx] /(1/x) (0/0 分子分母分别求导)
=lim(x->+∞) [-1/(1+x^2)] /(-1/x^2)
=lim(x->+∞) x^2/(1+x^2)
=1
(5)
L =lim(x->+∞) [( 2/π) arctanx ]^x
lnL
=lim(x->+∞) ln[( 2/π) arctanx ]/ (1/x) (0/0 分子分母分别求导)
=lim(x->+∞){ 1/[(1+x^2).arctanx ] }/ (-1/x^2)
=lim(x->+∞) -x^2/[(1+x^2).arctanx ]
=lim(x->+∞) -x^2/(1+x^2). lim(x->+∞) (1/arctanx)
=-2/π
L = e^(-2/π)
lim(x->+∞) [( 2/π) arctanx ]^x = e^(-2/π)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询