求解一数学题,题如图
2个回答
展开全部
(n+2)*a²(n+1) - (n+1)*a²n + a(n+1)*an
= [(n+2)*a(n+1)-(n+1)*an]*[a(n+1)+an]
= 0
∴(n+2)*a(n+1)-(n+1)*an = 0
或 a(n+1)+an = 0
a(n+1)+an = 0
a(n+1)= -an 与正数列矛盾,舍去。
再看,(n+2)*a(n+1)-(n+1)*an = 0
(n+2)*a(n+1) = (n+1)*an
= n*a(n-1) = (n-1)*a(n-2)
= …… = 2*a1 = 2
an = 2/(n+1)
= [(n+2)*a(n+1)-(n+1)*an]*[a(n+1)+an]
= 0
∴(n+2)*a(n+1)-(n+1)*an = 0
或 a(n+1)+an = 0
a(n+1)+an = 0
a(n+1)= -an 与正数列矛盾,舍去。
再看,(n+2)*a(n+1)-(n+1)*an = 0
(n+2)*a(n+1) = (n+1)*an
= n*a(n-1) = (n-1)*a(n-2)
= …… = 2*a1 = 2
an = 2/(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询