展开全部
y=1+xe^(xy),
微分得dy=e^(xy)dx+xe^(xy)*(ydx+xdy),
整理得[1-x^2*e^(xy)]dy=(1+xy)e^(xy)*dx,
所以dy/dx=(1+xy)e^(xy)/[1-x^2*e^(xy)],
x=0时y=1,dy/dx=1
所以d^y/dx^={(y+xy')(2+xy)e^(xy)[1-x^2*e^(xy)]-[-2x-x^2*(y+xy')]e^(2xy)*(1+xy)}/[1-x^2*e^(xy)]^2,
所以x=0时y''=d^y/dx^=2.
微分得dy=e^(xy)dx+xe^(xy)*(ydx+xdy),
整理得[1-x^2*e^(xy)]dy=(1+xy)e^(xy)*dx,
所以dy/dx=(1+xy)e^(xy)/[1-x^2*e^(xy)],
x=0时y=1,dy/dx=1
所以d^y/dx^={(y+xy')(2+xy)e^(xy)[1-x^2*e^(xy)]-[-2x-x^2*(y+xy')]e^(2xy)*(1+xy)}/[1-x^2*e^(xy)]^2,
所以x=0时y''=d^y/dx^=2.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-03-10 · 知道合伙人教育行家
关注
展开全部
dy=e^(xy)*dx+xe^(xy)*(xdy+ydx)
y'(x)=dy/dx=(xy+1)e^(xy)/[1-x^2*e^(xy)]
y(0)=y'(0)=1
y''(0)=[(xy+1)e^(xy)]'-[1-x^2*e^(xy)]'
=[y+xy'(0)]+e^(xy)*(y+xy')+2x*e^(xy)+x^2*[e^(xy)]'(边求导边代入)
=y+y=2y=2
y'(x)=dy/dx=(xy+1)e^(xy)/[1-x^2*e^(xy)]
y(0)=y'(0)=1
y''(0)=[(xy+1)e^(xy)]'-[1-x^2*e^(xy)]'
=[y+xy'(0)]+e^(xy)*(y+xy')+2x*e^(xy)+x^2*[e^(xy)]'(边求导边代入)
=y+y=2y=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求导,y'=e^(xy)+x*e^(xy)*[x*y'+y]
二次求导
二次求导
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询