求解第十二题
Sn=n^2-n+1
bn= an.cos[(n+1)π/2]
Tn=b1+b2+...+bn
T2019=?
solution:
Sn=n^2-n+1
n=1, =>a1=1
for n≥2
an = Sn -S(n-1)
=2n-1 -1
=2n-2
ie
an
=1 ; n=1
=2n-2 ; n≥2
bn= an.cos[(n+1)π/2]
b1= a1. cosπ = cosπ =-1
for n≥2
bn
= (2n-2).cos[(n+1)π/2]
=0 ; n 是偶数
=2n-2 ; n = 3, 7, 11,...
=-(2n-2) ; n=5, 9, 13, .....
T2019
=b1+b2+....+b2019
=b1+b3+b5+...+b2019
=b1+(b3+b7+b11+...+b2019) +(b5+b9+...+b2017)
=-1 +(4+12+....+4036) -(8+16+...+4032)
=-1+4 +(12-8) +(20-16)+...+(4036-4032)
=3 + 4+4+...+4
=3 +4x504
=3+2016
=2019
ans: B