解法为什么是错误的?

 我来答
帐号已注销
2019-10-24 · TA获得超过5323个赞
知道大有可为答主
回答量:4533
采纳率:90%
帮助的人:334万
展开全部
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程(linear equation with one unknown)。[1] 其一般形式是:
有时也写作:
可以通过等式性质化简而成为一元一次方程的整式方程(如 )也属于一元一次方程。一元一次方程是一种线性方程,且只有一
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题[2]。1859年,数学家李善兰正式将这类等式译为一元一次方程[1]。
中文名
一元一次方程
外文名
linear equation with one unknown
标准形式
ax+b=0或ax=b(a≠0)
类型
整式方程、线性方程
一元一次方程最早见于约公元前1600年的古埃及时期。
约公元前1650年,古埃及的莱因德纸草书中记载了第24题,题目为:“一个量,加上它的 等于19,求这个量。”解决了形为 的一次方程,即单假设法解决问题。
花拉子米
公元前1世纪左右,中国人在《九章算术》中首次加入了负数,并提出了正负数的运算法则,解决了移项问题。在“盈不足”一章中提出了盈不足术。但该方法并没有被用来解决一元一次方程。在11~13世纪时传入阿拉伯地区,并被称为“契丹算法”。
9世纪,阿拉伯数学家花拉子米在《对消与还原》中给出了解方程的简单可行的基本方法,即“还原”和“对消”。但没有采用字母符号。体现了明显的方程的思想。
12世纪,印度数学家婆什迦罗在《丽拉沃蒂》一书中用假设法(设未知数)来解决一类一元一次方程。由于所假设的数可以是任意正数,婆什迦罗称上述方法为“任意数算法”。
13世纪,中国的盈不足术传入欧洲,意大利数学家斐波那契在《计算之书》中利用单假设和双假设法来解一元一次方程。
韦达
16世纪时,韦达创立符号代数之后,提出了方程的移项与同除命题,也创立了这一概念,被尊称为“现代数学之父”。但是韦达没有接受负数。
16世纪时,明代数学家程大位(1533-1606)在《算法统宗》一书中也用假设法来解一元一次方程。
1859年,中国数学家李善兰正式将这类等式译为一元一次方程。[1]
概念定义
只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程(linear equation with one unknown)。[1] 其一般形式是:
有时也写作:
可以通过等式性质化简而成为一元一次方程的整式方程(如 )也属于一元一次方程。一元一次方程是一种线性方程,且只有一个根。
求根方法
一般方法
解一元一次方程有五步,即去分母、去括号、移项、合并同类项、系数化为1,所有步骤都根据整式和等式的性质进行。[1]
以解方程 为例:
去分母,得:
去括号,得:
移项,得:
合并同类项,得:(常简写为“合并,得:”)
系数化为1,得:
在一元一次方程中,去分母一步通常乘以各分母的最小公倍数,如果分母为分数,则可化为该一项的其他部分乘以分母上分数的倒数的形式。[2]
以方程 为例:
消除分母上的分数,可化简为:
希望我能帮助你解疑释惑。
兔斯基
2019-10-24 · 知道合伙人教育行家
兔斯基
知道合伙人教育行家
采纳数:880 获赞数:2175
大学:新生奖学金,人民奖学金,天津市数学建模一等奖

向TA提问 私信TA
展开全部
是因为极限的加减法运算法则必须是两个极限都存在才能计算,显然x趋于零时
1/x^2趋于无穷,即不存在,所以不能够运用加减法计算.
望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式