这第10题怎么做
1个回答
展开全部
(1)
f(x)= asin(π/6+x) -cos(π/3-x)
过点 ( π/3,4)
4=asin(π/6+π/3) -cos(π/3-π/3)
= a-1
a=5
(2)
f(x)
= 5sin(π/6+x) -cos(π/3-x)
=5.[ (√3/2)sinx + (1/2)cosx ] - [ (1/2)cosx + (√3/2)sinx ]
=2√3sinx + 2cosx
=4sin(x+π/6)
min f(x) = -4
f(x)= asin(π/6+x) -cos(π/3-x)
过点 ( π/3,4)
4=asin(π/6+π/3) -cos(π/3-π/3)
= a-1
a=5
(2)
f(x)
= 5sin(π/6+x) -cos(π/3-x)
=5.[ (√3/2)sinx + (1/2)cosx ] - [ (1/2)cosx + (√3/2)sinx ]
=2√3sinx + 2cosx
=4sin(x+π/6)
min f(x) = -4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询