
展开全部
x^2+y^2 ≤ 2x 极坐标即为 r ≤ 2cost, x^2+y^2 ≤ 1 极坐标即为 r ≤ 1,
联立解 r = 2cost 与 r = 1得 t = π/3.
积分域 D 为二者公共部分,即两弓形之和, 且关于 x 轴对称,则
I = ∫∫<D>√(x^2+y^2)dxdy
= 2[∫<0, π/3>dt∫<0, 1> r·rdr + ∫<π/3, π/2>dt∫<0, 2cost> r·rdr]
= (2π/3)(1/3) + (2/3)∫<π/3, π/2>8(cost)^3dt
= 2π/9 + (16/3)∫<π/3, π/2>[1-(sint)^2]dsint
= 2π/9 + (16/3)[sint - (1/3)(sint)^3]<π/3, π/2>
= 2π/9 + (16/3)[2/3 - √3/2 + (1/3)(3/4)(√3/2)]
= 2π/9 + (16/3)[2/3 - √3/2 + (1/3)(3/4)(√3/2)]
= 2(π+16)/9 - 2√3
联立解 r = 2cost 与 r = 1得 t = π/3.
积分域 D 为二者公共部分,即两弓形之和, 且关于 x 轴对称,则
I = ∫∫<D>√(x^2+y^2)dxdy
= 2[∫<0, π/3>dt∫<0, 1> r·rdr + ∫<π/3, π/2>dt∫<0, 2cost> r·rdr]
= (2π/3)(1/3) + (2/3)∫<π/3, π/2>8(cost)^3dt
= 2π/9 + (16/3)∫<π/3, π/2>[1-(sint)^2]dsint
= 2π/9 + (16/3)[sint - (1/3)(sint)^3]<π/3, π/2>
= 2π/9 + (16/3)[2/3 - √3/2 + (1/3)(3/4)(√3/2)]
= 2π/9 + (16/3)[2/3 - √3/2 + (1/3)(3/4)(√3/2)]
= 2(π+16)/9 - 2√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询