换元积分法求不定积分 20
4个回答
展开全部
设 1/[x(2-3x)] = a/x + b/(2-3x) = [a(2-3x)+bx]/[x(2-3x)]
则 2a = 1, b-3a = 0, 得 a = 1/2, b = 3/2
1/[x(2-3x)] = (1/2)[1/x + 3/(2-3x)]
I = (1/2)[∫dx/x + ∫3dx/(2-3x)] = (1/2)[∫dx/x - ∫d(2-3x)/(2-3x)]
= (1/2)[ln|x| - ln|2-3x|] + C = (1/2)ln|x/(2-3x)| + C
则 2a = 1, b-3a = 0, 得 a = 1/2, b = 3/2
1/[x(2-3x)] = (1/2)[1/x + 3/(2-3x)]
I = (1/2)[∫dx/x + ∫3dx/(2-3x)] = (1/2)[∫dx/x - ∫d(2-3x)/(2-3x)]
= (1/2)[ln|x| - ln|2-3x|] + C = (1/2)ln|x/(2-3x)| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询