直流电动机的工作原理是怎么样的?
直流电动机的工作原理是将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过。电机内部有磁场存在,载流的转子(即电枢)导体将受到电磁力 f 的作用 f=Blia (左手定则)。所有导体产生的电磁力作用于转子,使转子以n(转/分)旋转,以使拖动机械负载。
由于电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。
这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机(起动电流为额定电流的6~8倍)。
为了限制起动电流,常在电枢回路内串入专门设计的可变电阻。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电动机中。
但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电动机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。
扩展资料
直流电动机特性类型的选择:
(1) 恒转矩的生产机械(TL一定,和转速无关)要选硬特性的电动机,如:金属加工、起重机械等。
(2) 通风机械负载,机械负载 TL 和转速 n 的平方成正比。这类机械也要选硬特性的电动机拖动。
(3) 恒功率负载(P 一定时,T和n 成反比),要选 软特性电机拖动。如:电气机车等。
参考资料来源:百度百科-直流电动机
直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向。)
导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。
如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。
当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。
因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。
这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。
扩展资料
在直流电动机中,电流并非直接接入线圈,而是通过电刷B1、B2和换向器再接入线圈。因为电刷B1、B2静止不动,电流总是从正极性电刷B1流入,经过旋转的换向片流入位于N极下的导体,再经过位于S极下的导体,由负极性电刷B2流出。
故当导体旋转而交替地处于N极和S极下时,导体中的电流将随其所处磁极极性的改变而同时改变其方向,从而使电磁转矩始终保持不变,使电枢向同一个方向旋转,这就是直流电动机的工作原理。
对直流发电机而言,当直流发电机在原动机的拖动下时,直流发电机的转子转动,电枢绕组不断切割不同磁极下的磁通,感应出交流电动势。
但是由于换向器和电刷的机械整流作用,电枢绕组两端的电动势和电压变成直流。通过接线端子,将电刷两端与直流负载相连接,直流发电机就能向负载提供直流电压和直流电流。
参考资料来源:百度百科-直流电动机
2022-11-01 · 百度认证:北京惠企网络技术有限公司官方账号
电机内部有磁场存在,载流的转子(即电枢)导体将受到电磁力f的作用f=Blia(左手定则)。
所有导体产生的电磁力作用于转子,使转子以n(转/分)旋转,以使拖动机械负载。直流电动机是将直流电能转换为机械能的电动机。
因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励三类,其中自励又分为并励、串励和复励三种。
按我理解应该都是异极相吸的原理。直流有刷电机,当电枢绕组通电瞬间会产生磁场,此磁场与主磁极相互作用(吸引)便使电机转子转动。
无刷直流电机之所以既能用直流电,又不用电刷,是因为有个电路专门来控制它各线圈的电流流动方向。这个电流换向电路最主要的部件是FET(场效应晶体管,Field-Effect Transitor)。可以把FET看作是开关。下图简单地将FET标为F0~F5。FET的“开合”是由单片机控制的。
而无刷直流电机的转子转动,根据物理的常识,大致就是磁极同极相斥。以N极为例,永磁体转子在80°的角度范围内斥力最大。S极同理。
由此叠加可得,永磁体转子受力最大的区域是N\S极中间的的区域。然后加上永磁体转子,就能理解无刷直流电机的转子转动情况了。
但是一个线圈,由于这个线圈转到不同位置时磁场是不相同的,导致了线圈所受的电磁力也一直在变,所以线圈转起来不稳定,忽快忽慢。所以可以通过多安装几个线圈来保证线圈受力均匀和稳定。
综上,直流电机的工作转动关键有三点:1、线圈绕组磁性 变化的时机,即电流换向的时机。它决定了转子转动的方向;2、霍尔传感器对永磁体转子所处位置的反馈;3、使用单片机产生的PWM波形,控制转子转动的速度决定。
直流电机是根据通电流的导体在磁场中会受力的原理来工作的。既电工基础中的左手定则。电动机的转子上绕有线圈,通入电流,定子作为磁场线圈也通入电流,产生定子磁场,通电流的转子线圈在定子磁场中,就会产生电动力,推动转子旋转。转子电流是通过整流子上的碳刷连接到直流电源的。
直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励3类,其中自励又分为并励、串励和复励3种。
当直流电源通过电刷向电枢绕组供电时,电枢表面的N极下导体可以流过相同方向的电流,根据左手定则导体将受到逆时针方向的力矩作用;电枢表面S极下部分导体也流过相同方向的电流,同样根据左手定则导体也将受到逆时针方向的力矩作用。
这样,整个电枢绕组即转子将按逆时针旋转,输入的直流电能就转换成转子轴上输出的机械能。由定子和转子组成,定子:基座,主磁极,换向极,电刷装置等;转子(电枢):电枢铁心,电枢绕组,换向器,转轴和风扇等。
扩展资料:
直流电动机的性能与它的励磁方式密切相关,通常直流电动机的励磁方式有4种:直流他励电动机、直流并励电动机、直流串励电动机和直流复励电动机。掌握4种方式各自的特点 :
1.直流他励电动机: 励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。
2.直流并励电动机: 电路并联,分流,并励绕组两端电压就是电枢两端电压,但是励磁绕组用细导线绕成,其匝数很多,因此具有较大的电阻,使得通过他的励磁电流较小。
3.直流串励电动机:电流串联,分压,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。
4.直流复励电动机:电动机的磁通由两个绕组内的励磁电流产生。
由于电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机(起动电流为额定电流的6~8倍) 。
为了限制起动电流,常在电枢回路内串入专门设计的可变电阻,其原理接线。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电动机中。
但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电动机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。
对容量较大的直流电动机,通常采用降电压起动。即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速。此种方法电源设备比较复杂。
参考资料:百度百科-直流电动机