导数计算 这个题怎么解
1个回答
展开全部
从趋向的角度看,导数的趋向只有δx->0(此外,单侧导数还有 δx从左侧或右侧趋近于0的情况,对应地,极限也有单侧极限),而函数极限有x->无穷大,x->某个具体数 ,你说的x->0本身也是x->某个具体数 。另外,函数极限还有x->正无穷大,x->负无穷大,x从单侧趋近于某个具体数。
但上面的说法很表层。再深一步说,导数实际是一种特殊的极限,即函数值的增量δY与自变量的增量δX之比的极限(当δx->0 )。从极限的角度说,函数极限的性质,也完全适合导数。
但上面的说法很表层。再深一步说,导数实际是一种特殊的极限,即函数值的增量δY与自变量的增量δX之比的极限(当δx->0 )。从极限的角度说,函数极限的性质,也完全适合导数。
追问
大哥能不能别瞎答???
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询