
已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,求∠B的度数及AC的长.
1个回答
展开全部
设BC的中点为O,连接OA则AB=OB=OC=AD=CD;
那么∠AOB=∠OAB=∠OAD=∠OAC+∠OCA
∠OAD=∠OAC+∠CAD
又因为
∠OCA=∠CAD
所以
∠OAC=∠OCA
即OA=OC=OB
△ABO是等边三角形,∠B=60°
又因为
∠B+∠OAB+∠OCA+∠OAC=180°
即
2×(∠B+∠OCA)=180°
∠BAC=∠B+∠OCA=90°
△BAC是直角三角形
AC²=BC²-AB²=16-4=12
所以AC=2√3
那么∠AOB=∠OAB=∠OAD=∠OAC+∠OCA
∠OAD=∠OAC+∠CAD
又因为
∠OCA=∠CAD
所以
∠OAC=∠OCA
即OA=OC=OB
△ABO是等边三角形,∠B=60°
又因为
∠B+∠OAB+∠OCA+∠OAC=180°
即
2×(∠B+∠OCA)=180°
∠BAC=∠B+∠OCA=90°
△BAC是直角三角形
AC²=BC²-AB²=16-4=12
所以AC=2√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询