微分方程通解

 我来答
郦长运折晏
2020-04-11 · TA获得超过3.3万个赞
知道大有可为答主
回答量:1.2万
采纳率:29%
帮助的人:986万
展开全部
解微分方程y'-3xy=2x
解:这是一个典型的一阶线性微分方程。其基本解法(程式化解法)如下:
先求一阶线性齐次方程y'-3xy=0的通解:
dy/dx=3xy;分离变量得dy/y=3xdx;积分之,得lny=(3/2)x²+lnC₁;即得y=C₁e^[(3/2)x²;
将C₁换成x的函数u,即y=ue^[(3/2)x²].............(1)
将(1)的两边对x取导数得:dy/dx=y'=(du/dx)e^[(3/2)x²芦弊盯]+3xue^[(3/2)x²]........(2)
将(1)和(2)代入原方程得:
(du/dx)e^[(3/2)x²]+3xue^[(3/2)x²]-3xue^[(3/2)x²]=2x
故得(du/dx)e^[(3/2)x²]=2x;分离变量得du=2xe^[-(3/2)x²]dx;
积分之得u=∫2xe^[-(3/2)x²]dx=(-2/3)∫de^[-(3/2)x²]=-(2/3)e^[-(3/2)x²]+C
代入(1)式即得通解y={-(2/3)e^[-(3/2)x²]+C}e^[(3/2)x²]=-2/3+Ce^[(3/2)x²]
【此解法谓之“陪和参数变异法”或“常数卜兆变异法”】
名字叫难忘啊DM
高粉答主

2020-08-16 · 醉心答题,欢迎关注
知道答主
回答量:5.8万
采纳率:3%
帮助的人:2816万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式