高数积分求详解 20
展开全部
原式=∫(-1,1) 2x^2/[1+√(1-x^2)]dx+∫(-1,1) x/[1+√(1-x^2)]dx
因为2x^2/[1+√(1-x^2)]是偶函数,x/[1+√(1-x^2)]是奇函数
所以原式=2*∫(0,1) 2x^2/[1+√(1-x^2)]dx+0
=4*∫(0,1) x^2/[1+√(1-x^2)]dx
令x=sint,则dx=costdt
原式=4*∫(0,π/2) [sin^2t/(1+cost)]*costdt
=4*∫(0,π/2) [(1-cos^2t)/(1+cost)]*costdt
=4*∫(0,π/2) (1-cost)*costdt
=∫(0,π/2) (4cost-4cos^2t)dt
=∫(0,π/2) (4cost-2-2cos2t)dt
=(4sint-2t-sin2t)|(0,π/2)
=4-π
因为2x^2/[1+√(1-x^2)]是偶函数,x/[1+√(1-x^2)]是奇函数
所以原式=2*∫(0,1) 2x^2/[1+√(1-x^2)]dx+0
=4*∫(0,1) x^2/[1+√(1-x^2)]dx
令x=sint,则dx=costdt
原式=4*∫(0,π/2) [sin^2t/(1+cost)]*costdt
=4*∫(0,π/2) [(1-cos^2t)/(1+cost)]*costdt
=4*∫(0,π/2) (1-cost)*costdt
=∫(0,π/2) (4cost-4cos^2t)dt
=∫(0,π/2) (4cost-2-2cos2t)dt
=(4sint-2t-sin2t)|(0,π/2)
=4-π
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询