高数求助:f(x)可积为什么可以推出其变上限积分函数连续?
4个回答
展开全部
谢谢了、看到“用定义证明”这几个字,我就理解了。哎。看来还是要紧扣定义啊!一个函数,当△x→0时,△y→0.即连续。这个问题△y=F(x+△x)-F(x)。这里说f(x)可积。其变上限积分函数为F(x)=积分号(上:x;下:a)f(t)dt所以△y=积分号(上:x+△x;下:a)f(t)dt-积分号(上:x;下:a)f(t)dt=积分号(上:x+△x;下:x)f(t)dt这时,当△x→0时,△y→0.所以说F(x)连续。其实这个证明课本上有,不过他是证明可导。同济五版P235再次谢谢楼上的仁兄![em:36]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
谢谢了、
看到“用定义证明”这几个字,我就理解了。哎。看来还是要紧扣定义啊!
一个函数,当△x→0时,△y→0.即连续。
这个问题△y=F(x+△x)-F(x)。这里说f(x)可积。
其变上限积分函数为F(x)=积分号(上:x;下:a)f(t)dt
所以△y=积分号(上:x+△x;下:a)f(t)dt-积分号(上:x;下:a)f(t)dt
=积分号(上:x+△x;下:x)f(t)dt
这时,当△x→0时,△y→0.所以说F(x)连续。
其实这个证明课本上有,不过他是证明可导。
同济五版P235
再次谢谢楼上的仁兄![em:36]
看到“用定义证明”这几个字,我就理解了。哎。看来还是要紧扣定义啊!
一个函数,当△x→0时,△y→0.即连续。
这个问题△y=F(x+△x)-F(x)。这里说f(x)可积。
其变上限积分函数为F(x)=积分号(上:x;下:a)f(t)dt
所以△y=积分号(上:x+△x;下:a)f(t)dt-积分号(上:x;下:a)f(t)dt
=积分号(上:x+△x;下:x)f(t)dt
这时,当△x→0时,△y→0.所以说F(x)连续。
其实这个证明课本上有,不过他是证明可导。
同济五版P235
再次谢谢楼上的仁兄![em:36]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用定义证明
只要证明当x的微增量趋向于0时
F(x+x的微增量)=F(x)
很明显F(x+x的微增量)当x的微增量趋向于0时它的积分上限就又是趋于x
这样
F(x+x的微增量)=F(x)
所以f(x)的变上限积分F(x)连续
写的有点乱你用草纸最好写成式子好理解点
只要证明当x的微增量趋向于0时
F(x+x的微增量)=F(x)
很明显F(x+x的微增量)当x的微增量趋向于0时它的积分上限就又是趋于x
这样
F(x+x的微增量)=F(x)
所以f(x)的变上限积分F(x)连续
写的有点乱你用草纸最好写成式子好理解点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询