急!!spss回归分析:怎样看数据是否可以做线性回归分析,又怎么看回归分析的结果。
1个回答
展开全部
一个自变量
一个因变量
如果要进行线性回归,无论是一元还是多元,第一步首先应该先画下散点图,看是否有线性趋势,如果有线性趋势了,再使用线性回归。这个是前提,现在很多人都忽略这一点
直接使用的。
至于判断线性方程
拟合的好坏,看r方和调整的r方就可以了,r方越接近1,说明拟合的效果越好。你这个里面
r方为0.618,调整的r方为0.570,说明这个自变量可以解释因变量57%左右的变异,不能说好,也不能说坏。看具体情况而定
anova(b)这个表格是检验
回归方程是否显著的,sig的值=0.007
小于0.05,说明回归模型有意义,可以使用。
下面一个标准化回归系数
和非标准化回归系数
则是回归方程自变量的系数,非标准化的系数用来拟合方程使用,标准化的系数是剔除了不同自变量的不同计量单位影响的,用于比较多个自变量的影响大小
一个因变量
如果要进行线性回归,无论是一元还是多元,第一步首先应该先画下散点图,看是否有线性趋势,如果有线性趋势了,再使用线性回归。这个是前提,现在很多人都忽略这一点
直接使用的。
至于判断线性方程
拟合的好坏,看r方和调整的r方就可以了,r方越接近1,说明拟合的效果越好。你这个里面
r方为0.618,调整的r方为0.570,说明这个自变量可以解释因变量57%左右的变异,不能说好,也不能说坏。看具体情况而定
anova(b)这个表格是检验
回归方程是否显著的,sig的值=0.007
小于0.05,说明回归模型有意义,可以使用。
下面一个标准化回归系数
和非标准化回归系数
则是回归方程自变量的系数,非标准化的系数用来拟合方程使用,标准化的系数是剔除了不同自变量的不同计量单位影响的,用于比较多个自变量的影响大小
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |