数列通项公式的求法1,3,6,10.........求它的通项公式?
2个回答
展开全部
设a[n]为所求数列(n
=
0,1,2,...)
令b[k]
=
a[k+1]
-
a[k]
由条件,b[0]
=
2,
b[1]
=
3,
b[2]
=
4,
...即b[k]
=
k
+
2.
所以
a[k+1]
-
a[k]
=
k
+
2.
上式两边对k从0到n-1求和得
a[n]
-
a[0]
=
n(n-1)/2
+
2n
=
n²/2
+
3n/2.
即a[n]
=
n²/2
+
3n/2
+
1
=
(n+1)(n+2)/2.
(n
=
0,1,2,...)
=
0,1,2,...)
令b[k]
=
a[k+1]
-
a[k]
由条件,b[0]
=
2,
b[1]
=
3,
b[2]
=
4,
...即b[k]
=
k
+
2.
所以
a[k+1]
-
a[k]
=
k
+
2.
上式两边对k从0到n-1求和得
a[n]
-
a[0]
=
n(n-1)/2
+
2n
=
n²/2
+
3n/2.
即a[n]
=
n²/2
+
3n/2
+
1
=
(n+1)(n+2)/2.
(n
=
0,1,2,...)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询