高等数学的数一的数列极限证明问题
3个回答
展开全部
1、记x1=√2,x(n+1)=√(2+xn),归纳法可以证明0<xn<2,从而证得{xn}递增,所以xn有极限,设为a,在
递推公式
两边取极限得a=√(2+a),解得a=2
2、[x]是
取整函数
吧
x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由
夹逼准则
,x[1/x]→1
x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1)
x[1/x]=1
递推公式
两边取极限得a=√(2+a),解得a=2
2、[x]是
取整函数
吧
x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由
夹逼准则
,x[1/x]→1
x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1)
x[1/x]=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由题意可得:
记x1=√2,x(n+1)=√(2+xn),归纳法可以证明0<xn<2,从而证得{xn}递增,所以xn有极限,设为a,在递推公式两边取极限得a=√(2+a),解得a=2
又[x]是取整函数
当x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由夹逼准则,x[1/x]→1
当x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1)
x[1/x]=1
记x1=√2,x(n+1)=√(2+xn),归纳法可以证明0<xn<2,从而证得{xn}递增,所以xn有极限,设为a,在递推公式两边取极限得a=√(2+a),解得a=2
又[x]是取整函数
当x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由夹逼准则,x[1/x]→1
当x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1)
x[1/x]=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |