已知函数f(x)的定义域为R,且对任意实数x满足f(x)=-f(4-x),当x≤...
已知函数f(x)的定义域为R,且对任意实数x满足f(x)=-f(4-x),当x≤2时,f(x)单调递增,已知m+n<4,且m<2,且n>2,则f(m)+f(n)的值()A...
已知函数f(x)的定义域为R,且对任意实数x满足f(x)=-f(4-x),当x≤2时,f(x)单调递增,已知m+n<4,且m<2,且n>2,则f(m)+f(n)的值( ) A.能够为0 B.可正可负 C.恒小于0 D.恒大于0
展开
1个回答
展开全部
分析:利用函数f(x)的定义域为R,且对任意实数x满足f(x)=-f(4-x),可得f(m)+f(n)=f(m)-f(4-n),根据m+n<4,m<2,且n>2,可得m<4-n<2,利用当x≤2时,f(x)单调递增,即可得f(m)+f(n)<0,从而问题得解.
解答:解:∵函数f(x)的定义域为R,且对任意实数x满足f(x)=-f(4-x),
∴f(m)+f(n)=f(m)-f(4-n)
∵m+n<4
∴m<4-n
∵m<2,且n>2
∴m<4-n<2
∵当x≤2时,f(x)单调递增
∴f(m)<f(4-n)即f(m)-f(4-n)<0
∴f(m)+f(n)<0
故选C.
点评:本题重点考查函数的性质,解题的关键是正确利用已知条件,适当变形,从而利用函数的单调性.
解答:解:∵函数f(x)的定义域为R,且对任意实数x满足f(x)=-f(4-x),
∴f(m)+f(n)=f(m)-f(4-n)
∵m+n<4
∴m<4-n
∵m<2,且n>2
∴m<4-n<2
∵当x≤2时,f(x)单调递增
∴f(m)<f(4-n)即f(m)-f(4-n)<0
∴f(m)+f(n)<0
故选C.
点评:本题重点考查函数的性质,解题的关键是正确利用已知条件,适当变形,从而利用函数的单调性.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询