证明“若A为n阶正交阵,则其伴随矩阵A*也一定是正交矩阵.”
2个回答
展开全部
知识点:(A*)^T = (A^T)*
因为A是正交的,所以 A^TA=E (或 AA^T=E)
所以 (A^TA)*=E*
所以 A*(A^T)* = E
所以 A*(A*)^T = E
所以 A* 是正交矩阵.
因为A是正交的,所以 A^TA=E (或 AA^T=E)
所以 (A^TA)*=E*
所以 A*(A^T)* = E
所以 A*(A*)^T = E
所以 A* 是正交矩阵.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |