已知微分方程的通解怎么求微分方程

已知微分方程的通解怎么求这个微分方程比如1.x^2-xy+y^2=c2.e^(-ay)=c1x+c2如果能告诉一般方法就更好了... 已知微分方程的通解怎么求这个微分方程
比如1.x^2-xy+y^2=c 2.e^(-ay)=c1x+c2 如果能告诉一般方法就更好了
展开
 我来答
创作者hWecaOoIUH
高粉答主

2019-12-24 · 每个回答都超有意思的
知道大有可为答主
回答量:8570
采纳率:92%
帮助的人:1269万
展开全部

微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。

例如:

其解为:

其中C是待定常数;

如果知道

则可推出C=1,而可知 y=-\cos x+1。

一阶线性常微分方程

对于一阶线性常微分方程,常用的方法是常数变易法:

对于方程:y'+p(x)y+q(x)=0,可知其通解:

然后将这个通解代回到原式中,即可求出C(x)的值。

二阶常系数齐次常微分方程

对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解

对于方程:

可知其通解:

其特征方程:

根据其特征方程,判断根的分布情况,然后得到方程的通解

一般的通解形式为:

则有

则有

在共轭复数根的情况下:

r=α±βi

扩展资料

一阶微分方程的普遍形式

一般形式:F(x,y,y')=0

标准形式:y'=f(x,y)

主要的一阶微分方程的具体形式

约束条件

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

唯一性

存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。

针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理 [4]  则可以判别解的存在性及唯一性。

针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。

参考资料来源:百度百科-常微分方程

参考资料来源:百度百科-微分方程

武悼天王81

2022-05-24 · TA获得超过2539个赞
知道大有可为答主
回答量:1.2万
采纳率:4%
帮助的人:421万
展开全部

解:方程为x²-xy+y²=c(c为任意常数),两边同时求导,有2x-y-xy'+2yy'=0,微分方程为y'=(2x-y)/(x-2y)

方程为e⁻ᵃʸ=c₁x+c₂,两边同时求导,有-ae⁻ᵃʸy'=c₁,

-ae⁻ᵃʸy"+a²e⁻ᵃʸy'²=0,微分方程为y"=ay'²

请参考,希望对你有帮助

求解隐式微分方程

常微分方程是研究自然科学和社会科学中的事物、物体和现象运动、演化和变化规律的最为基本的数学理论和方法。物理、化学、生物、工程、航空航天、医学、经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程,如牛顿运动定律、万有引力定律、机械能守恒定律,能量守恒定律、人口发展规律、生态种群竞争、疾病传染、遗传基因变异、股票的涨伏趋势、利率的浮动、市场均衡价格的变化等,对这些规律的描述、认识和分析就归结为对相应的常微分方程描述的数学模型的研究。因此,常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学的各个领域。

学习《常微分方程》的目的是用微积分的思想,结合线性代数,解析几何等的知识,来解决数学理论本身和其它学科中出现的若干最重要也是最基本的微分方程问题,使学生学会和掌握常微分方程的基础理论和方法,为学习其它数学理论,如数理方程、微分几何、泛函分析等后续课程打下基础。

同时,通过这门课本身的学习和训练,使学生学习数学建模的一些基本方法,初步了解当今自然科学和社会科学中的一些非线性问题,为他们将来从事相关领域的科学研究工作培养兴趣,做好准备。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生叡冯玉
2019-03-14 · TA获得超过1056个赞
知道答主
回答量:5
采纳率:100%
帮助的人:1123
展开全部
已知微分方程的通解怎么求这个微分方程
答:求导!如:1.x^2-xy+y^2=c
等式两边对x求导:2x-y-x(dy/dx)+2y(dy/dx)=0
故dy/dx=(2x-y)/(x-2y);或写成 2x-y-(x-2y)y′=0
若要求二阶微分方程则需再求导一次:
2-y′-(1-2y′)y′+(x-2y)y〃=0
2.e^(-ay)=c1x+c2
-ay′e^(-ay)=c₁(一阶微分方程)
-ay〃e^(-ay)-ay′(-ay′)e^(-ay)=0,即a²(y′)²-ay〃=0(二阶微分方程)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式