高数题,求解微分方程的特解?有详细步骤,感谢
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
y(1) =0
e^y.(1+x^2) dy -2x(1+e^y)dx =0
e^y.(1+x^2) dy = 2x(1+e^y)dx
∫e^y/(1+e^y) dy = ∫2x/(1+x^2) dx
ln|1+e^y| = ln|1+x^2| +C
y(1)=0
ln2=ln2 +C
C=0
ln|1+e^y| = ln|1+x^2|
1+e^y = 1+x^2
e^y = x^2
y = ln(x^2)
e^y.(1+x^2) dy -2x(1+e^y)dx =0
e^y.(1+x^2) dy = 2x(1+e^y)dx
∫e^y/(1+e^y) dy = ∫2x/(1+x^2) dx
ln|1+e^y| = ln|1+x^2| +C
y(1)=0
ln2=ln2 +C
C=0
ln|1+e^y| = ln|1+x^2|
1+e^y = 1+x^2
e^y = x^2
y = ln(x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y(1) =0
e^y.(1+x^2) dy -2x(1+e^y)dx =0
e^y.(1+x^2) dy = 2x(1+e^y)dx
∫e^y/(1+e^y) dy = ∫2x/(1+x^2) dx
ln|1+e^y| = ln|1+x^2| +C
y(1)=0
ln2=ln2 +C
C=0
ln|1+e^y| = ln|1+x^2|
1+e^y = 1+x^2
e^y = x^2
y = ln(x^2)
e^y.(1+x^2) dy -2x(1+e^y)dx =0
e^y.(1+x^2) dy = 2x(1+e^y)dx
∫e^y/(1+e^y) dy = ∫2x/(1+x^2) dx
ln|1+e^y| = ln|1+x^2| +C
y(1)=0
ln2=ln2 +C
C=0
ln|1+e^y| = ln|1+x^2|
1+e^y = 1+x^2
e^y = x^2
y = ln(x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:微分方程为e^y(1+x²)dy-2x(1+e^y)dx=0, 化为e^ydy/(1+e^y)=2xdx/(1+x²), 两边积分有ln|1+e^y|=ln(1+x²)+lnc (c为任意正实数),方程的通解为1+e^y=c+cx²
∵y|(x=1)=0 ∴有c=1 ∴微分方程的特解为
e^y=x²
∵y|(x=1)=0 ∴有c=1 ∴微分方程的特解为
e^y=x²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求微分方程 (e^y)(1+x²)dy-2x(1+e^y)dx=0满足y(1)=0的特解。
解:分离变量得:[(e^y)/(1+e^y)]dy=[2x/(1+x)]dx
取积分:∫[(e^y)/(1+e^y)]dy=[2x/(1+x²)]dx
即 ∫[d(1+e^y)/(1+e^y)]=[d(1+x²)/(1+x²)]dx
积分之得 ln(1+e^y)=ln(1+x²)+lnC
故得通解 1+e^y=C(1+x²)
将初始条件代入得:1+e°=C(1+1),即有C=1;
故满足初始条件的特解为:e^y=x²,或写成:y=2ln∣x∣;
解:分离变量得:[(e^y)/(1+e^y)]dy=[2x/(1+x)]dx
取积分:∫[(e^y)/(1+e^y)]dy=[2x/(1+x²)]dx
即 ∫[d(1+e^y)/(1+e^y)]=[d(1+x²)/(1+x²)]dx
积分之得 ln(1+e^y)=ln(1+x²)+lnC
故得通解 1+e^y=C(1+x²)
将初始条件代入得:1+e°=C(1+1),即有C=1;
故满足初始条件的特解为:e^y=x²,或写成:y=2ln∣x∣;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询