隔板法原理解释是什么?
隔板法原理解释是在n个元素间的(n-1)个空中插入k个板,可以把n个元素分成k+1组的方法。隔板法必须满足n个元素必须互不相异和分成的组别彼此相异。
隔板法是某些元素不相邻的排列组合题,即不邻问题,可采用插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
题目举例:
例1将20个大小形状完全相同的小球放入3个不同的盒子,允许有盒子为空,但球必须放完,有多少种不同的方法?
分析:本题中的小球大小形状完全相同,故这些小球没有区别,问题等价于将小球分成三组,允许有若干组无元素,用隔板法。
解析:将20个小球分成三组需要两块隔板,因为允许有盒子为空,不符合隔板法的原理,那就人为的再加上3个小球,保证每个盒子都至少分到一个小球,那就符合隔板法的要求了(分完后,再在每组中各去掉一个小球,即满足了题设的要求)。
然后就变成待分小球总数为23个,球中间有22个空档,需要在这22个空档里加入2个隔板来分隔为3份,共有C(22,2)=231种不同的方法。
点评:对n件相同物品(或名额)分给m个人(或位置),允许若干个人(或位置)为空的问题,可以看成将这n件物品分成m组,允许若干组为空的问题.将n件物品分成m组,需要m-1块隔板,将这n件物品和m-1块隔板排成一排,占n+m-1位置。
从这n+m-1个位置中选m-1个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有Cn+m-1 m-1种不同的方法,再将物品放入其余位置,因物品相同无差别,故物品之间无顺序,是组合问题,只有1种放法,根据分步计数原理,共有Cn+m-1 m-1×1=Cn+m-1 m-1种排法。