叙述并证明余弦定理
1个回答
展开全部
余弦定理:
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积.
余弦定理证明:
在任意△ABC中,做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a .
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2
b^2=(sinB2+cosB2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积.
余弦定理证明:
在任意△ABC中,做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a .
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2
b^2=(sinB2+cosB2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询