高一数学函数应该怎么学好

 我来答
达人方舟教育
2022-07-14 · TA获得超过5129个赞
知道大有可为答主
回答量:4785
采纳率:100%
帮助的人:240万
展开全部
  函数是高中数学的重要构成部分,也是学习的重点和难点,函数的思想贯穿于整个高中数学的学习。所以这个知识点不得不学好。以下是我分享给大家的高一数学函数的学习方法的资料,希望可以帮到你!

  高一数学函数的学习方法
  一、关注考试说明对本部分内容的要求

  1.函数(1) 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2) 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3) 了解简单的分段函数,并能简单应用(函数分段不超过三段).(4) 理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5) 会运用基本初等函数的图像分析函数的性质.

  二、关注函数概念的学习过程

  在学习函数概念时,通过对初中学习的函数概念及几种不同的函数如“正比例函数、反比例函数、一次函数及二次函数”的对比复习与巩固,体会概念的内涵与外延。突出对函数概念的学习过程,结合实际例子对概念进行逐句分析与理解,在实例中体会函数的“三要素”.另外,结合“映射”的概念与函数概念进行对比理解.当然更重要的是理解“对应”.

  三、关注函数概念的学习方法

  在学习函数概念时,我们必须掌握这样的方法,那就是“数形结合”.根据题目确定是“以形助数”还是“以数助形”.

  四、关注函数概念的相关知识拓展与生成.

  对于函数概念的学习所涉及的“函数定义域、值域、对应关系”及“区间”等要一一理解,并根据相应的题目,拓展试题类型,提升知识生成度.下面以例题的形式进行说明.

  1. 常见基本初等函数的定义域求方法,拓展到抽象函数.

  (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R..

  (3)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.
  高中学生学习数学的不良习惯
  ⑴思想上的松懈

  有些同学把初中的那一套学习思想移植到高中来,™简单的认为自己在初一、初二时并没有用功学习,只是在初三临近中考的前两三个月发奋学习就轻易的考上了高中,因而认为读高中也不过如此,高一、高二用不着那么用功,只要等到高三时再努力学习,也一样考上一所理想的大学,如果一开始抱有这种思想,等到意识到此问题的严重性,恐怕为时已晚,回天乏术,殊不知“万丈高楼平地起”,没有高一、高二的基础,高考便是空谈,到头来既是白日做梦一场空,切记!切记!!

  ⑵靠记忆学习数学

  初中教师在讲课时,对知识点讲授非常细致,由于时间充足,内容少,学生练习多,熟能生巧,必然会取得好成绩。但观众教师在讲课时一节课会讲很多概念、例题、解题方法,时间比较紧,如果上课不集中注意力去理解课堂内容,那么课后作业就不能顺利完成,久而久之必然会影响成绩。

  ⑶依赖教师,忽视自学习惯

  许多学生进入高中后,依旧像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权,表现在不做课堂笔记,不做纠错笔记,不做总结,不制定学习计划,坐等上课,课前不预习,上课晕头转向,实在不行就依赖家庭教师,这些做法都不科学。

  ⑷在头脑中没有形成数学知识体系,只注重孤立的知识点

  高中数学共有140多个知识点,知识的形成过程中还蕴含着大量的数学思想方法和解题技巧,知识点之间有着较强的联系,这些往往被学生忽略。学到哪一节就看哪一节的内容,不知道章与章、节与节之间的联系,只注重表象特征,不善于深入挖掘,使得学到的知识是零散的、片面的。

  ⑸只注重结论与记忆,不注重知识的形成过程

  高中数学概念课有着丰富的内容,学生对这些课往往轻视,对一些概念的发生、发展过程缺乏深刻的理解,只停留在表象的概括水平上和记忆层面,不能从内涵上去把握概念。比如学生在学到数列这一章节时,都会背诵数列的公式,但一碰到数列题就无从下手,原因是当时学习数列概念时没有理解概念形成过程中产生的数学思想方法,不能将这种思想方法迁移到具体问题钟来。

  ⑹没有形成自我反思、自我总结的习惯

  学生只满足于上课听懂老师讲授的内容,课后不进行认真消化和总结归纳,没有形成自我反思、自我总结的习惯,有很多学生认为做反思笔记没有用,其实不然,如果你想上一个重本院校,不反思、不总结,只要你足够聪明,这也是有可能的,如果你想上一所好大学,不反思、不总结绝无可能(本书中专门讲解怎样做专题笔记)。
  高中数学的学习建议
  (一)养成课前预习的习惯

  ⒈预习的意义

  预习是在教师讲课之前独立地自主学习新课的内容,做到初步理解并为上课做好知识准备和心理准备(一般学校都会以学案的形式给出)。预习的意义有以下三点①培养良好的学习习惯,学会自主学习,掌握自学方法,为众生学习打下基础②预习有助于了解下一节课的主要内容和重难点,为上课扫除部分知识障碍,建立新旧知识之间的联系,有利于知识的系统化③有助于提高听课效率,对预习中不懂的问题,在老师讲解时,可以做到目标明确,态度积极,注意力集中,容易将不懂的题搞懂,这样可以挤出时间记录书本上没有的知识,认真分析,从而提高学习效率。

  2.预习的基本步骤

  边读边思:数学课本分为引言、数学概念、规律(包括法则、定理、推理、性质、推理等)、图形、例题、习题,引言一般是以学生已有的经验和熟悉的生活常识为基础展开,内容熟悉而具体,使学生对所学的内容有一个感性的认识,新教材改革后数学概念和定理一般都以观察、思考、探究等数学活动引导学生们发现问题、提出问题,通过亲生实践、主动思考,从具体到抽象、从特殊到一般的活动来理解和掌握数学的基础知识,有很强的可操作性,这是新课改后教材最大的变化,在自学例题时,要做到:分清解题步骤,找出解题关键;弄清各解题步骤的关键,养成每步都要问为什么的习惯,尽可能的运用上面的知识;注意有些例题配有图形,即便没有也要尽可能的再通过图形角度理解例题,分析例题的解题规范和格式,再看看例题再有没有其他的解法,最后按例题格式精做几道习题。

  边划边想:一般情况下学生自学的过程中都能基本把握一节课内容的重点,在自学的过程中划出本节的重点,这样做有助于学生对知识的掌握,对有疑问的地方用“?”标记,在第二天教师讲解的过程中扫除疑问,提高听课效率。

  边想边写:新教材每页都有大片的空白,在自学和老师讲解的过程中将自己的看法和体会记在空白处,可以记对概念的解读,对解法的思考,对易错点的分析,对例题的条件和结论的变式等,这样总有利于学生全面把握本节内容,有些学校会配有自主研发的学案,降低了预习的难度,也是一种很好的预习方式。

  (二)专心听讲,积极提出自己的问题,认真做好笔记

  “学然后知不足”,听课时理解和掌握基本知识、基本技能和基本方法的关键环节,听课是要听教师是如何突破难点、重点和关键点的,听自己在预习过程中不能理解的内容,听教师对一类问题或习题是如何分析和总结。有些同学喜欢将教师的板书一字不拉的记下来,大可不必这样做,课堂笔记是记老师补充的一些重要的知识点、结论和一些经典的解法和解题技巧;只要记住解题过程,课余时间慢慢整理,一定要处理好听课和记笔记的矛盾,不要顾此失彼。

  新教改后对教师的教法和学生的学法提出了更高的要求,强调学生的主体作用,教师在课堂上要积极鼓励学生参与进来,课堂上有一些问题不能依赖教师讲解,而是让每个学生都积极思考,展示自己的想法,探究更多的想法和解法,提出想法有时比解决一个问题更加重要,因为它带来的是思想的变革(笔者认为不能抛弃传统的讲授法,应内容而定)。

  (三)认真完成作业,做好复习总结

  认真完成作业时独立思考,分析问题,解决问题,进一步加深对所学新知识的理解和掌握新技巧的必要过程,但现实并不乐观,绝大多数学生都有抄作业的习惯,更有甚者几乎全部抄写,当然有一部分因素是作业布置不科学造成的,因此作业也是对学生一直、毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”,另外从思想上要重视作业,不把作业当成负担,作业就是工作。

  及时复习,系统小结,时高效学习的另一个重要环节(本书专门讲解了如何做数学学习笔记),通过反复阅读教材,多方面查阅有关资料,强化对基本概念、知识体系的理解与记忆,将所学的新知识与与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记本上,对所学的心知识由懂到会,在复习总结时,要以教材为依据,在系统复习的基础上,参照笔记与资料,通过分析、综合、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。

  (四)关注错题

  有一种简单化的认识,以为错误都是知识不过关造成的,其实,解题错误的类型不只一个,在知识过关的情况下也会出现差错.既然成功的解题有知识因素,能力因素,经验因素和情感因素,那么不成功或失败的解题也会与这些因素相关,我们总结为:知识性错误,逻辑性错误,策略性错误,心理性错误.

  知识性错误

  主要指由于数学知识上的缺陷所造成的错误.如误解题意、概念不清、记错法则、用错定理,方法失误等.核心是所涉及的内容是否符合数学事实.例如学生在学到三角函数的公式时常常是把公式记混而出现错误.

  逻辑性错误

  逻辑性错误主要指由于违反逻辑规则所产生的推理上或论证上的错误.如虚假论据,不能推出,偷换概念,循环论证等,常常表现为四种命题的混淆,充要条件的错乱,反证法反设不真等.核心是所进行的推理论证是否符合逻辑规则.例如学生在学到数学归纳法这章内容时常常认为从n=k假设推证n=k+1时命题成立是显然成立的,没有用到假设就认为原命题成立,这样就违背了数学归纳法证明数学命题的逻辑规则.

  知识性错误与逻辑性错误既有联系又有区别.

  (1)知识性错误与逻辑性错误有联系.

  由于数学知识与逻辑规则常常是相依共存的,从广义上说,我们也不能把逻辑知识排除在数学知识之外,所以,逻辑性错误与知识性错误常是同时存在的,从哪个角度进行分析取决于比重的大小与教学的需要.在上面的例子中我们已经看到,当我们说它有知识性错误时并不排除它也有逻辑性错误;同样,当我们说它有逻辑性错误时也不排除它还有知识性错误.

  (2)知识性错误与逻辑性错误又有区别.

  知识性错误主要指涉及的命题是否符合事实(是否符合定义、法则、定理等),核心是命题的真假性;逻辑性错误主要指所进行的推理论证是否符合逻辑规则,核心是推理论证的有效性.虽然,数学命题的事实真假性与推理论证的逻辑有效性是有联系的,但是数学毕竟不是逻辑,数学毕竟比逻辑大得多,我们依然应该在知识盲点的基本位置和主要趋势上区分知识性错误与逻辑性错误.

  策略性错误

  这主要指由于解题方向上的偏差,造成思维受阻或解题长度过大.对于考试而言,即使做对了,若费时费事,也会造成潜在丢份或隐含失分,存在策略性错误.在解题探求中,思维受阻或思路曲折是不可避免的,因而,探索阶段的策略性错误是很难完全消除的.

  例如:不等式x2+ax+1>0在xÎ[1,2]上恒成立,求实数a的取值范围,大多数同学

  都会想到通过构造二次函数,利用二次函数动轴定区间的办法求解该问题,过程比较繁琐,如果采用分离常数法求解,问题便迎刃而解,过程简单明确.

  心理性错误

  这主要指解题主体虽然具备了解决问题的必要知识与技能,但由于某些心理原因而产生的解题错误.如顺序心理、滞留心理、潜在假设,以及看错题、抄错题、书写丢三落四等.高考阅卷启示我们,许多中上水平考生常在“会而不对、对而不全”上拉开录取与落榜的距离.这是一个“老大难”问题:

  (1)会而不对.有的考生,拿到题目不是束手无策,而是在正确的思路上,或考虑不周、或推理不严、或书写不准,最后答案是错的,这叫“会而不对”.

  (2)对而不全.另一些考生,思路大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一逻辑点过不去;或遗漏某一特殊情况、讨论不够完备;或潜在假设、或以偏概全,这叫“对而不全”.一开始能意识到纠错的重要性对初上高中的学生至关重要.

  (五)主动学习,善于对比和联想

  在课堂中,学生应该主动地跟随老师的思路,主动地动脑、动手、动口,积极参与课堂教学,培养各方面能力。把由主要感知事物的外部特征的感性认识向对知识的分析、综合理解的理性认知过渡,把较多的具体形象思维向抽象的逻辑思维过渡,培养思维的主动性、独立性与灵活性,提高思维能力。在教师的指导下,通过自己的观察、实验、探索,在与他人的合作中交流自己得到的结论,在研究性学习过程中培养自己的创新精神、合作精神和实践能力。

  学生在整个的学习过程中药善于联想,学会举一反三、触类旁通。比如平面几何知识向空间几何联想,数学语言与几何图形的联想,一般问题与特殊问题的联想。利用对比可以加深对知识的理解和掌握。如将指数函数与对数函数的对比,可知它们的图像位置不同,但对底数的讨论是一致的,这样可以建立合理的知识结构,系统全面地理解知识。

  学习数学一定要在三个字上下工夫:“精、透、活”,只看书不做题不行,只埋头题海战术不总结积累不行。对课本知识既能钻进去,又能跳出来,结合自身的特点,寻找最佳的学习方法。方法因人而异,但学习的四环节(预习、上课、作业、复习)、一步骤(学习笔记)是不能少的。

  对于一名普通的数学教育工作者,超越知识上和认识上单纯的和狭隘的思维模式,放远眼光,拓宽视野,尽可能促进学生的全面发展,是它毕生追求的信念。

猜你喜欢:

1. 高中数学学习窍门

2. 如何学好高中数学

3. 高中生应该如何高效学习数学

4. 学好高中数学的注意事项及建议

5. 高中数学学习方法心得体会
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式