圆柱体的表面积公式是什么?
圆柱的表面积是圆柱的上下两个底面积和圆柱侧面积的总和, 用公式表示为: s=2πr²+2πrh。 其中r表示圆柱底面半径径,,h表示圆柱的高。
知识扩展
圆柱的侧面积公式:S=Ch=πdh=2πrh,其中d表示圆柱底面直径,c表示底面周长,h表示圆柱的高。
一个长方形以一边为轴旋转一周,所经过的空间叫做圆柱体。圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。圆柱体的侧面是一个曲面,如果沿着圆柱体的一条高将圆柱体的侧面剪开,圆柱体的侧面的展开图是一个长方形、正方形。斜着切开就得到平行四边形。
由于沿着圆柱体的一条高将圆柱体的侧面剪开,圆柱体的侧面的展开图是一个长方形,得到的长方形的长是圆柱的底面周长,宽是圆柱体的高,因为,长方形的面积计算公式是长×宽,因此,圆柱的侧面积计算公式是底面周长×高。即:S=Ch=πdh=2πrh。
圆柱的底面积
由于圆柱的底面是个圆,圆的面积加算公式是:s圆=πr² ,所以,圆柱的面积公式是: S底=πr²
圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
直圆柱也叫正圆柱、圆柱,就是底面和顶面是同样半径(r)的圆,并且两圆圆心的连线和顶面、底面的互相垂直,并且我们可以得知,圆柱侧面展开图是长方形。
特征:
1、圆柱的底面都是圆,并且大小一样。
2、圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
拓展资料:圆柱与圆锥的关系
等底等高的圆锥积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱,圆锥的高是圆柱的三倍。
圆柱的表面积公式:S表=2πr²+2πrh。
圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);
圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;
圆柱的底面积=圆的面积,也就是S底=πr²。
扩展资料
1、圆柱体积
圆柱所占空间的大小,叫做这个圆柱体的体积。
求圆柱的体积跟求长方体、正方体一样,都是底面积×高。
设一个圆柱底面半径为r,高为h,则圆柱的体积为:V=πr²h;
S为底面积,高为h,体积为V,三者关系为:V=Sh;
其中,S=πr²。
2、圆柱性质
(1)圆柱的底面都是圆,并且大小一样。
(2)圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
(3)两个底面的对应点之间的距离叫做高,且高有无数条。
圆柱的表面积公式为:S表=侧面积+两个底面积=2πrh+2πr^2。
圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
直圆柱也叫正圆柱、圆柱,就是底面和顶面是同样半径(r)的圆,并且两圆圆心的连线和顶面、底面的互相垂直,并且我们可以得知,圆柱侧面展开图是长方形。
特征:
1、圆柱的底面都是圆,并且大小一样。
2、圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
圆柱体积:
设一个圆柱底面半径为r,高为h,则圆柱的体积为V=πr^2h。
圆柱与圆锥的关系:
等底等高的圆锥积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱,圆锥的高是圆柱的三倍。
圆柱的表面积=侧面积+两个底面积=2πrh+2πr^2 单位:平方厘米、平方米、平方分米......
圆柱(circular cylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
扩展资料
圆柱的体积=底面积×高=πr^2 ×h 单位:立方厘米、立方分米、立方米......
圆柱的两个完全相同的圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面的对应点之间的距离叫做高(高有无数条)。
特征:
1、圆柱的底面都是圆,并且大小一样。
2、圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是圆柱的底面周长。
与圆锥的关系
等底等高的圆锥积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱,圆锥的高是圆柱的三倍。
参考资料:百度百科圆柱词条