行列式的证明 a+b ab 0 .0 0 1 a+b ab .0 0 0 1 a+b.0 0 . 0 0 0.1 a+b
1个回答
展开全部
记原行列式为An (以下小写字母表示下标)
按第一列将其分为两个n阶行列式:
Bn:(注意它的形式!)
a ab 0 .0 0
1 a+b ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
和Cn:
b ab 0 .0 0
0 a+b ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
知:An=Bn+Cn
由性质知:Cn=b*A(n-1) *
现在计算Bn:提出第一行的公因子a后有:
1 b 0 .0 0
1 a+b ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
第一行乘以(-1)加到第二行:
1 b 0 .0 0
0 a ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
按第一列展开,并分析知:
Bn=a*B(n-1)
由此递推:Bn=a*B(n-1)=a^2*B(n-2)=
=a^(n-2)*B2.
容易求出B2=a^2.
即知:Bn=a^n.
由此:An=Bn+Cn=a^n+Cn=a^n+b*A(n-1) **
A2=a^2+ab+b^2.
由此可递推出:
An=a^n+b*A(n-1)
=a^n+b*[a^(n-1)+b*A(n-2)]
=a^n+b*{a^(n-1)+b*[a^(n-2)+b*A(n-3)]}
.
=a^n+a^(n-1)*b+a^(n-2)*b^2+...+a*b^(n-1)+
+b^n
按第一列将其分为两个n阶行列式:
Bn:(注意它的形式!)
a ab 0 .0 0
1 a+b ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
和Cn:
b ab 0 .0 0
0 a+b ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
知:An=Bn+Cn
由性质知:Cn=b*A(n-1) *
现在计算Bn:提出第一行的公因子a后有:
1 b 0 .0 0
1 a+b ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
第一行乘以(-1)加到第二行:
1 b 0 .0 0
0 a ab .0 0
0 1 a+b.0 0
.
0 0 0.1 a+b
按第一列展开,并分析知:
Bn=a*B(n-1)
由此递推:Bn=a*B(n-1)=a^2*B(n-2)=
=a^(n-2)*B2.
容易求出B2=a^2.
即知:Bn=a^n.
由此:An=Bn+Cn=a^n+Cn=a^n+b*A(n-1) **
A2=a^2+ab+b^2.
由此可递推出:
An=a^n+b*A(n-1)
=a^n+b*[a^(n-1)+b*A(n-2)]
=a^n+b*{a^(n-1)+b*[a^(n-2)+b*A(n-3)]}
.
=a^n+a^(n-1)*b+a^(n-2)*b^2+...+a*b^(n-1)+
+b^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询