求微分方程y′′y^3+1=0满足所给的初始条件y(x=1)=1 y′(x=1)=0 的特解.
4个回答
展开全部
设 dy/dx = y' = p , 则 dp/dx = (dp/dy)(dy/dx) = pdp/dy,
微分方程 y′′y^3+1 = 0 化为 y^3pdp/dy = -1, 2pdp = -2dy/y^3,
p^2 = y^(-2) + C1, x = 1 时 , y = 1, y' = p = 0 代入得 C1 = -1,
p^2 = y^(-2) - 1 , p = dy/dx = ±√[y^(-2) - 1] = ±√(1-y^2)/y
±ydy/√(1-y^2) = dx, ±(1/2)d(1-y^2)/√(1-y^2) = dx,
±√(1-y^2) = x + C2, x = 1 时 , y = 1, 代入得 C2 = -1,
特解 ±√(1-y^2) = x -1
微分方程 y′′y^3+1 = 0 化为 y^3pdp/dy = -1, 2pdp = -2dy/y^3,
p^2 = y^(-2) + C1, x = 1 时 , y = 1, y' = p = 0 代入得 C1 = -1,
p^2 = y^(-2) - 1 , p = dy/dx = ±√[y^(-2) - 1] = ±√(1-y^2)/y
±ydy/√(1-y^2) = dx, ±(1/2)d(1-y^2)/√(1-y^2) = dx,
±√(1-y^2) = x + C2, x = 1 时 , y = 1, 代入得 C2 = -1,
特解 ±√(1-y^2) = x -1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询