证明:函数的可导性与连续性的关系
1个回答
展开全部
给你讲解一下函数可导性与连续性的关系:设函数y=f(x)在x处可导,即lim(Δx→0)Δy/Δx=f '(x)存在.由具有极限的函数与无穷小的关系知道Δy/Δx=f '(x)+α(α为任意小的正实数,可以理解α的极限为0,但α≠O)上式同时乘以Δx,得Δy=f '(x)Δx+αΔx由此可见,当Δx→0时,Δy→0.这就是说,函数y=f(x)在x处是连续的.所以,函数y=f(x)在x处可导,则函数y=f(x)在x处必定连续.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
LUM
2024-12-25 广告
2024-12-25 广告
针对市面上稳定性分析仪,其原理都是持续通过一定波长的光源对样品进行检测记录光 信息谱线,随着时间的进行,谱线不断叠加。当样品出现变化时,记录到变化的谱线与初始 谱线进行对比,再通过软件进行相关分析。其实与常规稳定性用烘箱等手段测试一致,都是...
点击进入详情页
本回答由LUM提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |