对于连续函数定义域内的点来说,极限值就是它的函数值;反之,函数值就是它的极限值。
函数在一点有极限与这点是否有定义无关.但是函数在这点的邻域一定要有定义;一般地,函数在一点有极限,是指函数在这点存在双侧极限,且相等,只有区间端点,是单侧极限。
一般来说,极限值与函数值没有直接关系。在一点处的极限值是否存在于在那一点的函数值是否有定义是没有关系的。但若函数在那一点是连续的话,则在那一点处的极限值与他的函数值是相等的 。
一个函数在某点的极限和它在此点的函数值无关,而与在它附近的函数值有关,只要它附近的点距离此点距离趋于0时,函数值趋于一个常数就有极限函数在此点连续时极限值与函数值恰好相等。