为什么圆柱的体积是和它等底等高的圆锥体积的3倍
1个回答
展开全部
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径.
证明:把圆锥沿高分成k分
每份高 h/k,
第n份半径:n*r/k
第n份底面积:pi*n^2*r^2/k^2
第n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3因为1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6所以总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:
V=1/3Sh(V=1/3SH)
S是底面积,h是高,r是底面半径.
证明:把圆锥沿高分成k分
每份高 h/k,
第n份半径:n*r/k
第n份底面积:pi*n^2*r^2/k^2
第n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3因为1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6所以总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询