拉格朗日中值定理的证明

 我来答
浩星雁卉0Hz
高能答主

2022-03-04 · 认真答题,希望能帮到你
知道大有可为答主
回答量:1.5万
采纳率:31%
帮助的人:341万
展开全部
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式。
法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。人们对拉格朗日中值定理的认识可以上溯到公元前古希腊时代,古希腊数学家在几何研究中得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底。”这正是拉格朗日定理的特殊情况,古希腊数学家阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积。
厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
BG试验又称为G试验,是一种基于真菌细胞壁成分的血清学试验。BG试验检测的是真菌细胞壁中的葡聚糖成分。操作步骤如下:1. 左键单击【View】2. 左键单击【Residual Diagnostics】3. 左键单击【Series Corre... 点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式