拉格朗日中值定理又称
拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是
泰勒公式的弱形式。
法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。人们对拉格朗日中值定理的认识可以上溯到公元前古希腊时代,古希腊数学家在几何研究中得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底。”这正是拉格朗日定理的特殊情况,古希腊数学家
阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积。