
火电厂节能技术方法
1、使用新型的无油技术,如等离子点火技术、少油点火技术等。
2、对送风机、吸风机、一次风机等动力进行变频改造。实践证明,采用性能较好的变频器不但可靠性高,而且风机节电率可达40%~60%。大型变频器基本上每千瓦费用为1000元。
3、采用先进的设计技术和加工工艺、采用先进的附属设备和部件,对汽轮机通流部分进行改造,可以提高机组容量和缸效率,从而大幅度地降低发电煤耗。对于国产机组,采用先进的高效叶型进行通流部分改造,煤耗至少可降低8g/kWh。
4、当煤质发生变化时,及时调整制粉系统运行方式,经济的煤粉细度,降低飞灰和炉渣可燃物,提高锅炉热效率。建议电厂按0.5Vdaf较核煤粉细度。煤粉过粗,达不到经济细度,导致炉膛着火延迟,使火焰中心升高,排烟温度升高;煤粉过细,燃烧提前,火焰中心下降,对汽温调整产生影响,同时也增加了制粉系统电耗。请参考《电站磨煤机及制粉系统选型导则》(DL/T466-2004)。该标准规定,无论无烟煤、贫煤和烟煤,其经济煤粉细度均按0.5Vdaf选取。
5、采用先进的煤粉燃烧技术。煤粉燃烧稳定技术可以使锅炉适应不同的煤种,特别是燃用劣质煤和低挥发分煤,而且能提高锅炉燃烧效率,实现低负荷稳燃,防止结渣,并节约点火用油。
6、采用高参数的大容量火电机组,不仅能减少大气污染,而且大大降低供电煤耗。
7、根据国际电工委员会(IEC)1985年和《电站汽轮机技术条件》(DL/T892-2004)规定:在任何12个月的运行期间,汽轮机任何一进口的平均温度不应超过其额定温度。机组可以在(额定温度+8)℃下长期运行,但全年平均温度不允许超过额定值;在(额定温度+8)~(额定温度+14)℃下,机组全年允许运行400h;在(额定温度+14)~(额定温度+28)℃下,机组全年允许运行80h,但每次不超过15min;超过(额定温度+28)℃,要停机。
8、负荷降低时,应及时停运1套制粉系统。实践证明,300MW锅炉,3套制粉系统运行比2套制粉系统运行,排烟温度要高出10℃左右。制粉系统停运时,应尽量停运上层的制粉系统,同时相应地降低给粉机出力,以延长停磨时间和降低火焰中心。
9、在低负荷下机组采用滑压运行方式。例如某电厂300MW机组当负荷降到240MW以下时采用1、2、4、5四只高压调门全开,3、6两只高压调门全关的滑压运行方式,供电煤耗降低4.1g/kWh。
10、每月进行一次真空严密性试验。
11、由于煤炭市场逐步放开,许多电厂的煤源、煤种不稳定,诸多煤炭指标严重偏离设计煤种,给锅炉安全经济运行带来了较大的影响,因此应通过完善燃料采购、配煤掺烧的管理,努力克服当前煤炭市场的不利因素,尽量提高入炉煤的质量,确保锅炉燃烧最大限度地接近设计煤质。凡燃烧非单一煤种的电厂,要实行配煤责任制,每天根据不同煤种和锅炉设备特性,研究确定掺烧方式和掺烧配比,并通知有关岗位执行,避免锅炉低负荷期间燃烧不稳灭火。
12、认真抓好煤质监督工作,化验人员应及时将化验结果提供给运行和管理部门,以便于运行人员掌握和控制煤炭质量。有条件的电厂要安装煤质在线分析设备,进行煤质实时分析,并根据煤质来上煤,上到煤仓的煤是已知分析结果的煤,将煤质分析报告提前交到运行人员的手里,使运行人员能够及时进行燃烧调整,提高燃烧的安全性和经济性。
13、控制入炉煤湿度。煤的含水量过大,不但要降低炉膛温度,减少有效热的利用,而且还会造成排烟热损失的增加(因排烟容积增加)。燃料含水量每增加1%,热效率便要降低0.1%。

2018-12-14 广告
火电厂节能技术方法
节能是我国可持续发展的一项长远发展战略,是我国的基本国策。下面我为大家分享火电厂节能技术方法,欢迎大家阅读浏览。
1、提高蒸汽参数
常规超临界机组汽轮机典型参数为24.2MPa/566℃/566℃,常规超超临界机组典型参数为25-26.25MPa/600℃/600℃。提高汽轮机进汽参数可直接提高机组效率,综合经济性、安全性与工程实际应用情况,主蒸汽压力提高至27-28MPa,主蒸汽温度受主蒸汽压力提高与材料制约一般维持在600℃,热再热蒸汽温度提高至610℃或620℃,可进一步提高机组效率。主蒸汽压力大于27MPa时,每提高1MPa进汽压力,降低汽机热耗0.1%左右。热再热蒸汽温度每提高10℃,可降低热耗0.15%。预计相比常规超超临界机组可降低供电煤耗1.5~2.5克/千瓦时。技术较成熟。
适用于66、100万千瓦超超临界机组设计优化。
2、二次再热
在常规一次再热的基础上,汽轮机排汽二次进入锅炉进行再热。汽轮机增加超高压缸,超高压缸排汽为冷一次再热,其经过锅炉一次再热器加热后进入高压缸,高压缸排汽为冷二次再热,其经过锅炉二次再热器加热后进入中压缸。比一次再热机组热效率高出2%~3%,可降低供电煤耗8~10克/千瓦时技术较成熟。
美国、德国、日本、丹麦等国家部分30万千瓦以上机组已有应用。国内有100万千瓦二次再热技术示范工程。
3、管道系统优化
通过适当增大管径、减少弯头、尽量采用弯管和斜三通等低阻力连接件等措施,降低主蒸汽、再热、给水等管道阻力。机组热效率提高0.1%~0.2%,可降低供电煤耗0.3~0.6克/千瓦时。技术成熟。
适于各级容量机组。
4、外置蒸汽冷却器
超超临界机组高加抽汽由于抽汽温度高,往往具有较大过热度,通过设置独立外置蒸汽冷却器,充分利用抽汽过热焓,提高回热系统热效率。预计可降低供电煤耗约0.5克/千瓦时。技术较成熟。
适用于66、100万千瓦超超临界机组。
5、低温省煤器
在除尘器入口或脱硫塔入口设置1级或2级串联低温省煤器,采用温度范围合适的部分凝结水回收烟气余热,降低烟气温度从而降低体积流量,提高机组热效率,降低引风机电耗。预计可降低供电煤耗1.4~1.8克/千瓦时技术成熟。
适用于30~100万千瓦各类型机组。
6、700℃超超临界
在新的镍基耐高温材料研发成功后,蒸汽参数可提高至700℃,大幅提高机组热效率供电煤耗预计可达到246克/千瓦时。技术研发阶段。
7、汽轮机通流部分改造
对于13.5、20万千瓦汽轮机和2000年前投运的30和60万千瓦亚临界汽轮机,通流效率低,热耗高。采用全三维技术优化设计汽轮机通流部分,采用新型高效叶片和新型汽封技术改造汽轮机,节能提效效果明显。预计可降低供电煤耗10~20g/kWh。技术成熟。
适用于13.5~60万千瓦各类型机组。
8、汽轮机间隙调整及汽封改造
部分汽轮机普遍存在汽缸运行效率较低、高压缸效率随运行时间增加不断下降的问题,主要原因是汽轮机通流部分不完善、汽封间隙大、汽轮机内缸接合面漏汽严重、存在级间漏汽和蒸汽短路现象。通过汽轮机本体技术改造,提高运行缸效率,节能提效效果显著。预计可降低供电煤耗2~4g/kWh。技术成熟。
适用于30~60万千瓦各类型机组。
9、汽机主汽滤网结构型式优化研究
为减少主再热蒸汽固体颗粒和异物对汽轮机通流部分的.损伤,主再热蒸汽阀门均装有滤网。常见滤网孔径均为φ7,已开有倒角。但滤网结构及孔径大小需进一步研究。可减少蒸汽压降和热耗,暂无降低供电煤耗估算值。技术成熟。
适于各级容量机组。
10、锅炉排烟余热回收利用
在空预器之后、脱硫塔之前烟道的合适位置通过加装烟气冷却器,用来加热凝结水、锅炉送风或城市热网低温回水,回收部分热量,从而达到节能提效、节水效果。采用低压省煤器技术,若排烟温度降低30℃,机组供电煤耗可降低1.8g/kWh,脱硫系统耗水量减少70%。技术成熟。
适用于排烟温度比设计值偏高20℃以上的机组。
;