设a>b>0,求a^2+16/b(a-b)的最小值

 我来答
玄雨螺A
2022-05-25 · TA获得超过2947个赞
知道小有建树答主
回答量:627
采纳率:80%
帮助的人:88.4万
展开全部
分析:先利用基本不等式求得b(a-b)范围,进而代入原式,进一步利用基本不等式求得问题答案.∵b(a-b)≤【( b+a-b)/2】^2= a^2/4,
∴a^2+ 16/b(a-b)≥a^2+ 64/a2≥16.
当且仅当
{b=a-b
{a^2=8,

{a=2√2
{b=√2时取等号.
则最小值为16
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式