怎样用反证法证明根号2是无理数?

 我来答
世纪网络17
2022-08-14 · TA获得超过5914个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:139万
展开全部
首先要知道任何有理数都可以写成a/b的形式,其中a和b都是整数.
对于这题用反证法:
假设根号2是有理数,那么假设根号2=m/n(m,n都是正整数,且m,n互质,如果不互质,那么我们还可以约分,就没有意义了)
根号2=m/n 两边平方化简 得 2n^2=m^2
于是m一定要是偶数,可以设m=2s 其中s是正整数
那么2n^2=4s^2 化简n^2=2s^2
于是n也一定要是偶数,于是 m n 都是偶数 这就和假设m n互质相矛盾了,所以假设不成立,即根号2是无理数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式