曲线的切线一定会与该曲线只有一个交点吗
中学阶段只要求会求与曲线只有一个交点的切线,但是实际上切线不一定是与曲线只有一个交点的,比如直线y=1,与y=sinx有无数个交点,但是y=1也是它的切线。
曲线切线和法线的定义
P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT存在且唯一,则PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)
说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。
扩展资料:
曲线
曲线:任何一根连续的线条都称为曲线,包括直线、折线、线段、圆弧等。
按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相当于是说:
(1)R3中的曲线是一个一维空间的连续像,因此是一维的 。
(2)R3中的曲线可以通过直线做各种扭曲得到 。
(3)说参数的某个值,就是说曲线上的一个点,但是反过来不一定,因为我们可以考虑自交的曲线 。
微分几何就是利用微积分来研究几何的学科,为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。
但是可微曲线也是不太好的,因为可能存在某些曲线,在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。
参考资料来源:百度百科-曲线方程