曲线的切线一定会与该曲线只有一个交点吗

 我来答
刺任芹O
2022-11-16 · TA获得超过6.1万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8228万
展开全部

中学阶段只要求会求与曲线只有一个交点的切线,但是实际上切线不一定是与曲线只有一个交点的,比如直线y=1,与y=sinx有无数个交点,但是y=1也是它的切线。

曲线切线和法线的定义

P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT存在且唯一,则PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)

说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。

扩展资料:

曲线

曲线:任何一根连续的线条都称为曲线,包括直线、折线、线段、圆弧等。

按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相当于是说:

(1)R3中的曲线是一个一维空间的连续像,因此是一维的 。

(2)R3中的曲线可以通过直线做各种扭曲得到 。

(3)说参数的某个值,就是说曲线上的一个点,但是反过来不一定,因为我们可以考虑自交的曲线  。

微分几何就是利用微积分来研究几何的学科,为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。

但是可微曲线也是不太好的,因为可能存在某些曲线,在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。

参考资料来源:百度百科-曲线方程



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式