设f''(a)存在,f'(a)不等于0,求lim(x→a)[1/(f'(a)*(x-a))-1/(f(x)-f(a))]
1个回答
展开全部
x→a时
1/[f'(a)(x-a)]-1/[f(x)-f(a)]
=[f(x)-f(a)-f'(a)(x-a)]/{f'(a)(x-a)[f(x)-f(a)]}
→[f'(x)-f'(a)]/{f'(a)[f(x)-f(a)]+f'(a)(x-a)f'(x)}
={[f'(x)-f'(a)]/(x-a)}/{f'(a)[f(x)-f(a)]/(x-a)+f'(a)f'(x)}
→f''(a)/{2[f'(a)]^2}.
1/[f'(a)(x-a)]-1/[f(x)-f(a)]
=[f(x)-f(a)-f'(a)(x-a)]/{f'(a)(x-a)[f(x)-f(a)]}
→[f'(x)-f'(a)]/{f'(a)[f(x)-f(a)]+f'(a)(x-a)f'(x)}
={[f'(x)-f'(a)]/(x-a)}/{f'(a)[f(x)-f(a)]/(x-a)+f'(a)f'(x)}
→f''(a)/{2[f'(a)]^2}.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询