f(x)=xsinx图像是什么样的?
f(x)=xsinx图像如下图:
令x=2kπ+π/2,k∈Z
则 f(x)=xsinx=2kπ+π/2,k∈Z
则k--->+∞,则f(x)------>+∞,
所以f(x)=xsinx在(0,+∞)上是无界函数
扩展资料
性质:
1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足 f(x)=f(-x) 如y=x*x。
2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。
3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。例如:f(x)=x^2,x∈R,此时的f(x)为偶函数。f(x)=x^2,x∈(-2,2](f(x)等于x的平方,-2<x≤2),此时的f(x)不是偶函数。
判定方法:
根据奇偶函数的定义,先判断定义域是否关于原点对称,若不对称,即为非奇非偶,若对称,f(-x)=-f(x)的是奇函数; f(-x)=f(x)的是偶函数 。
如果f(x)为偶函数,则f(x+a)=f[-(x+a)],但如果f(x+a)是偶函数,则f(x+a)=f(-x+a)。
定义在R上的奇函数f(x)必满足f(0)=0;因为定义域在R上,所以在x=0点存在f(0),要想关于原点对称,在原点又只能取一个y值,只能是f(0)=0。这是一条可以直接用的结论:当x可以取0,f(x)又是奇函数时,f(0)=0)。
广告 您可能关注的内容 |