如图,在梯形ABCD中,AB∥ DC,AD=BC,∠A=60°,BD平分∠ABC,DE⊥AB于E,CF⊥BD于F,连接E?

 我来答
玄策17
2022-10-31 · TA获得超过937个赞
知道小有建树答主
回答量:276
采纳率:100%
帮助的人:63.5万
展开全部
(1)证明:在梯形ABCD中,因为 ABDC,AD=BC,QE =60度
所以 角ABC=角A=60度,角ADC=角CDA=120度
因为 BD平分角ABC
所以 角CBD=角ABDF=30度
因为 ABDC
所以 角CDB=角ABD=角CBD=30度
所以 CD=CB
因为 CF垂直于BD于F
所以 点F是BD的中点
因为 DE垂直于AB于E
所以 EF=BD/2=DF
又因为 角ABD=30度
所以 角EDF=60度
所以 三角形DEF是等边三角形.
(2)证明:在三角形ADE中,因为 DE垂直于AB于E,角A=60度
所以 角ADE=30度
所以 DE=根号3AE
同理在直角三角形BDE中,因为 角ABD=30度
所以 BE=根号3DE
所以 BE=3AE.,1,如图,在梯形ABCD中,AB∥ DC,AD=BC,∠A=60°,BD平分∠ABC,DE⊥AB于E,CF⊥BD于F,连接EF.
(1)求证:△DEF为等边三角形.(2)求证:BE=3AE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式