lim x→-8[ (√1-x)-3]/2+3次根号x 的极限是多少?
1个回答
展开全部
分子、分母同乘以 [√(1-x) +3]*[4 -2*x^(1/3) + x^(2/3)],则上式可以转化成:
=lim[√(1-x) -3][√(1-x) +3]*[4 -2*x^(1/3) + x^(2/3)]/{[√(1-x) +3]*[2+x^(1/3)]*[4 -2*x^(1/3) +x^(2/3)]}
=lim[(1-x) -9]*[4 -2*x^(1/3) +x^(2/3)]/{[√(1-x) +3]*[2^3 + x]}
=lim (-1)*(x+8)*[4 -2*x^(1/3) +x^(2/3)]/{[√(1-x) +3] * (x+8)}
=-1* lim[4 - 2*x^(1/3) +x^(2/3)]/[√(1-x) +3]
=-1* lim[4 - 2*(-8)^(1/3) + (-8)^(2/3)]/[√(1+8) + 3]
=-1* lim[4 - 2*(-2) + (-2)^2]/(3+3)
=-1* 12/6
=-2
=lim[√(1-x) -3][√(1-x) +3]*[4 -2*x^(1/3) + x^(2/3)]/{[√(1-x) +3]*[2+x^(1/3)]*[4 -2*x^(1/3) +x^(2/3)]}
=lim[(1-x) -9]*[4 -2*x^(1/3) +x^(2/3)]/{[√(1-x) +3]*[2^3 + x]}
=lim (-1)*(x+8)*[4 -2*x^(1/3) +x^(2/3)]/{[√(1-x) +3] * (x+8)}
=-1* lim[4 - 2*x^(1/3) +x^(2/3)]/[√(1-x) +3]
=-1* lim[4 - 2*(-8)^(1/3) + (-8)^(2/3)]/[√(1+8) + 3]
=-1* lim[4 - 2*(-2) + (-2)^2]/(3+3)
=-1* 12/6
=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询