曲率怎么求?
1个回答
展开全部
问题一:怎么求曲线在某点处的曲率? 假设曲线为 y=f(x),曲率圆圆心(a, b),半径为r;
曲率圆的本质就是要求曲线与圆在这点的切线与凹陷度一样。
首先得出曲率圆方程为:(x-a)^2 + (y-b)^2 = r^2;
假设曲线在该点处凹,则b > y,得出 y = b - (r^2 - (x-a)^2)^(1/2) ;
y' = (-1/2)[(r^2 - (x-a)^2)^(-1/2) ] * (-2)(x-a) = (x-a) (r^2 - (x-a)^2)^(-1/2) ;――A式
y'' = (r^2 - (x-a)^2)^(-1/2) + (x-a)*(-1/2)(r^2 - (x-a)^2)^(-3/2)*(-2)(x-a)
= (r^2 - (x-a)^2)^(-1/2) + (x-a)^2(r^2 - (x-a)^2)^(-3/2) ――B式
按理由A、B两式就可以消掉(x-a),得出一个半径r 的表达式由 y'与y''表示;
但是直接代入消元比较麻烦,可以如下这般代换:
由A知道(r^2 - (x-a)^2)^(-1/2) = y'/(x-a) 代入 B式有:
y'' = y’/(x-a) + (x-a)^2 (y'/(x-a))^3 = y'/(x-a) + y'^3 / (x-a) = (y' + y'^3) / (x-a)
=> (x-a) = (y' + y'^3) / y'' 此式再回过头代入A式中有:
y' = ((y' + y'^3) / y'')(r^2 - ((y' + y'^3) / y'')^2)^(-1/2)
=> r^2 = ((1 + y'^2) / y'')^2 + ((y' + y'^3)
/ y'')^2
= ((1 + y'^2)^3) / (y''^2)
=> r = (1 + y'^2)^(3/2)
/ y''
曲率就是1/r;
有了半径r、法线斜率(-1/y'),就很容易的求出曲率圆的圆心了,继而求出曲率圆的方程。
不知道对你有帮助没有。
问题二:求曲线的曲率计算公式 曲率的计算公式为:
问题三:如何求一段圆弧的曲率? 一段圆弧的曲率,那就是问圆的咯,因为除了圆的圆上各点处的曲率是一样的,都等于半径的倒数。其他圆弧,在弧上各点的曲率是不一样的,只能说是此圆弧上某点处的曲率。
问题四:圆的曲率怎么算 1.圆的曲率等于圆半径的倒数,即K=1/R。
2.
3.连续光滑曲线的曲率:单位弧长的两个端点对应的法线的夹角,用公式表示为:K=Δθ/Δs;对于半径为R的圆,Δs=RΔθ,于是,K=1/R;直线可看作圆的特殊情形,即R→∞,此时K=0,即直线的曲率为零。
问题五:曲率、曲率半径的概念及求法 曲线的曲率(curvature):就是针对曲线上某个点的切线方向角对弧长的转动率。通过微分来定义就是:K=lim|Δα/Δs|,Δs趋向于0的时候,k值就是曲率。曲率表明曲线偏离直线的程度,或曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。
曲率半径:曲率的倒数就是曲率半径。
曲率半径求法:ρ=|[(1+y'^2)^(3/2)/y'']|,K=1/ρ。或
问题六:怎么求曲线在某点处的曲率? 假设曲线为 y=f(x),曲率圆圆心(a, b),半径为r;
曲率圆的本质就是要求曲线与圆在这点的切线与凹陷度一样。
首先得出曲率圆方程为:(x-a)^2 + (y-b)^2 = r^2;
假设曲线在该点处凹,则b > y,得出 y = b - (r^2 - (x-a)^2)^(1/2) ;
y' = (-1/2)[(r^2 - (x-a)^2)^(-1/2) ] * (-2)(x-a) = (x-a) (r^2 - (x-a)^2)^(-1/2) ;――A式
y'' = (r^2 - (x-a)^2)^(-1/2) + (x-a)*(-1/2)(r^2 - (x-a)^2)^(-3/2)*(-2)(x-a)
= (r^2 - (x-a)^2)^(-1/2) + (x-a)^2(r^2 - (x-a)^2)^(-3/2) ――B式
按理由A、B两式就可以消掉(x-a),得出一个半径r 的表达式由 y'与y''表示;
但是直接代入消元比较麻烦,可以如下这般代换:
由A知道(r^2 - (x-a)^2)^(-1/2) = y'/(x-a) 代入 B式有:
y'' = y’/(x-a) + (x-a)^2 (y'/(x-a))^3 = y'/(x-a) + y'^3 / (x-a) = (y' + y'^3) / (x-a)
=> (x-a) = (y' + y'^3) / y'' 此式再回过头代入A式中有:
y' = ((y' + y'^3) / y'')(r^2 - ((y' + y'^3) / y'')^2)^(-1/2)
=> r^2 = ((1 + y'^2) / y'')^2 + ((y' + y'^3)
/ y'')^2
= ((1 + y'^2)^3) / (y''^2)
=> r = (1 + y'^2)^(3/2)
/ y''
曲率就是1/r;
有了半径r、法线斜率(-1/y'),就很容易的求出曲率圆的圆心了,继而求出曲率圆的方程。
不知道对你有帮助没有。
问题七:求曲线的曲率计算公式 曲率的计算公式为:
问题八:什么叫曲率? 曲率的概念及计算公式
概念
来源:为了平衡曲线的弯曲程度。
平均曲率,这个定义描述了AB曲线上的平均弯曲程度。其中表示曲线段AB上切线变化的角度,为AB弧长。
例:对于圆,。所以:圆周的曲率为,是常数。
而直线上,所以,即直线“不弯曲”。
对于一个点,如A点,为精确刻画此点处曲线的弯曲程度,可令,即定义,为了方便使用,一般令曲率为正数,即:。
计算公式的推导:
由于,所以要推导与ds的表示法,ds称为曲线弧长的微分(T5-28,P218)
因为,所以。
令,同时用代替得
所以或
具体表示;
1、时,
2、时,
3、时,(令)
再推导,因为,所以,两边对x求导,得,推出。
下面将与ds代入公式中:
,即为曲率的计算公式。
曲率半径:
一般称为曲线在某一点的曲率半径。
几何意义(T5-29)如图为在该点做曲线的法线(在凹的一侧),在法线上取圆心,以ρ为半径做圆,则此圆称为该点处的曲率圆。曲率圆与该点有相同的曲率,切线及一阶、两阶稻树。
应用举例:求上任一点的曲率及曲率半径(T5-30)
问题九:圆的曲率怎么算 1.圆的曲率等于圆半径的倒数,即K=1/R。
2.
3.连续光滑曲线的曲率:单位弧长的两个端点对应的法线的夹角,用公式表示为:K=Δθ/Δs;对于半径为R的圆,Δs=RΔθ,于是,K=1/R;直线可看作圆的特殊情形,即R→∞,此时K=0,即直线的曲率为零。
问题十:圆的曲率怎么求 曲率和曲线半径互为倒数
所以圆上任意一点的曲率都相等
曲率k=1/r
曲率圆的本质就是要求曲线与圆在这点的切线与凹陷度一样。
首先得出曲率圆方程为:(x-a)^2 + (y-b)^2 = r^2;
假设曲线在该点处凹,则b > y,得出 y = b - (r^2 - (x-a)^2)^(1/2) ;
y' = (-1/2)[(r^2 - (x-a)^2)^(-1/2) ] * (-2)(x-a) = (x-a) (r^2 - (x-a)^2)^(-1/2) ;――A式
y'' = (r^2 - (x-a)^2)^(-1/2) + (x-a)*(-1/2)(r^2 - (x-a)^2)^(-3/2)*(-2)(x-a)
= (r^2 - (x-a)^2)^(-1/2) + (x-a)^2(r^2 - (x-a)^2)^(-3/2) ――B式
按理由A、B两式就可以消掉(x-a),得出一个半径r 的表达式由 y'与y''表示;
但是直接代入消元比较麻烦,可以如下这般代换:
由A知道(r^2 - (x-a)^2)^(-1/2) = y'/(x-a) 代入 B式有:
y'' = y’/(x-a) + (x-a)^2 (y'/(x-a))^3 = y'/(x-a) + y'^3 / (x-a) = (y' + y'^3) / (x-a)
=> (x-a) = (y' + y'^3) / y'' 此式再回过头代入A式中有:
y' = ((y' + y'^3) / y'')(r^2 - ((y' + y'^3) / y'')^2)^(-1/2)
=> r^2 = ((1 + y'^2) / y'')^2 + ((y' + y'^3)
/ y'')^2
= ((1 + y'^2)^3) / (y''^2)
=> r = (1 + y'^2)^(3/2)
/ y''
曲率就是1/r;
有了半径r、法线斜率(-1/y'),就很容易的求出曲率圆的圆心了,继而求出曲率圆的方程。
不知道对你有帮助没有。
问题二:求曲线的曲率计算公式 曲率的计算公式为:
问题三:如何求一段圆弧的曲率? 一段圆弧的曲率,那就是问圆的咯,因为除了圆的圆上各点处的曲率是一样的,都等于半径的倒数。其他圆弧,在弧上各点的曲率是不一样的,只能说是此圆弧上某点处的曲率。
问题四:圆的曲率怎么算 1.圆的曲率等于圆半径的倒数,即K=1/R。
2.
3.连续光滑曲线的曲率:单位弧长的两个端点对应的法线的夹角,用公式表示为:K=Δθ/Δs;对于半径为R的圆,Δs=RΔθ,于是,K=1/R;直线可看作圆的特殊情形,即R→∞,此时K=0,即直线的曲率为零。
问题五:曲率、曲率半径的概念及求法 曲线的曲率(curvature):就是针对曲线上某个点的切线方向角对弧长的转动率。通过微分来定义就是:K=lim|Δα/Δs|,Δs趋向于0的时候,k值就是曲率。曲率表明曲线偏离直线的程度,或曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。
曲率半径:曲率的倒数就是曲率半径。
曲率半径求法:ρ=|[(1+y'^2)^(3/2)/y'']|,K=1/ρ。或
问题六:怎么求曲线在某点处的曲率? 假设曲线为 y=f(x),曲率圆圆心(a, b),半径为r;
曲率圆的本质就是要求曲线与圆在这点的切线与凹陷度一样。
首先得出曲率圆方程为:(x-a)^2 + (y-b)^2 = r^2;
假设曲线在该点处凹,则b > y,得出 y = b - (r^2 - (x-a)^2)^(1/2) ;
y' = (-1/2)[(r^2 - (x-a)^2)^(-1/2) ] * (-2)(x-a) = (x-a) (r^2 - (x-a)^2)^(-1/2) ;――A式
y'' = (r^2 - (x-a)^2)^(-1/2) + (x-a)*(-1/2)(r^2 - (x-a)^2)^(-3/2)*(-2)(x-a)
= (r^2 - (x-a)^2)^(-1/2) + (x-a)^2(r^2 - (x-a)^2)^(-3/2) ――B式
按理由A、B两式就可以消掉(x-a),得出一个半径r 的表达式由 y'与y''表示;
但是直接代入消元比较麻烦,可以如下这般代换:
由A知道(r^2 - (x-a)^2)^(-1/2) = y'/(x-a) 代入 B式有:
y'' = y’/(x-a) + (x-a)^2 (y'/(x-a))^3 = y'/(x-a) + y'^3 / (x-a) = (y' + y'^3) / (x-a)
=> (x-a) = (y' + y'^3) / y'' 此式再回过头代入A式中有:
y' = ((y' + y'^3) / y'')(r^2 - ((y' + y'^3) / y'')^2)^(-1/2)
=> r^2 = ((1 + y'^2) / y'')^2 + ((y' + y'^3)
/ y'')^2
= ((1 + y'^2)^3) / (y''^2)
=> r = (1 + y'^2)^(3/2)
/ y''
曲率就是1/r;
有了半径r、法线斜率(-1/y'),就很容易的求出曲率圆的圆心了,继而求出曲率圆的方程。
不知道对你有帮助没有。
问题七:求曲线的曲率计算公式 曲率的计算公式为:
问题八:什么叫曲率? 曲率的概念及计算公式
概念
来源:为了平衡曲线的弯曲程度。
平均曲率,这个定义描述了AB曲线上的平均弯曲程度。其中表示曲线段AB上切线变化的角度,为AB弧长。
例:对于圆,。所以:圆周的曲率为,是常数。
而直线上,所以,即直线“不弯曲”。
对于一个点,如A点,为精确刻画此点处曲线的弯曲程度,可令,即定义,为了方便使用,一般令曲率为正数,即:。
计算公式的推导:
由于,所以要推导与ds的表示法,ds称为曲线弧长的微分(T5-28,P218)
因为,所以。
令,同时用代替得
所以或
具体表示;
1、时,
2、时,
3、时,(令)
再推导,因为,所以,两边对x求导,得,推出。
下面将与ds代入公式中:
,即为曲率的计算公式。
曲率半径:
一般称为曲线在某一点的曲率半径。
几何意义(T5-29)如图为在该点做曲线的法线(在凹的一侧),在法线上取圆心,以ρ为半径做圆,则此圆称为该点处的曲率圆。曲率圆与该点有相同的曲率,切线及一阶、两阶稻树。
应用举例:求上任一点的曲率及曲率半径(T5-30)
问题九:圆的曲率怎么算 1.圆的曲率等于圆半径的倒数,即K=1/R。
2.
3.连续光滑曲线的曲率:单位弧长的两个端点对应的法线的夹角,用公式表示为:K=Δθ/Δs;对于半径为R的圆,Δs=RΔθ,于是,K=1/R;直线可看作圆的特殊情形,即R→∞,此时K=0,即直线的曲率为零。
问题十:圆的曲率怎么求 曲率和曲线半径互为倒数
所以圆上任意一点的曲率都相等
曲率k=1/r
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询