线性方程组特解如何求解?

 我来答
阿豪呦1
2022-11-17 · TA获得超过9957个赞
知道答主
回答量:2
采纳率:0%
帮助的人:434
展开全部

特解是由该矩阵经过行列变换后变为标准式,那么这个标准矩阵和原来的矩阵所代表的方程组是同解的。所以就由标准矩阵列出同解方程组,然后得出该方程组特解。

具体解法为:

(1)将原增广矩阵行列变换为标准矩阵。

(2)根据标准行列式写出同解方程组。

(3)按列解出方程。

(4)得出特解。

线性方程组的通解由特解和一般解合成。一般解是AX=0求出来的,特解是由AX=B求出来。形式为X=η0+k*η。

扩展资料:

非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于  ,即可写出含n-r个参数的通解。非齐次线性方程组 

有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩) [2] 

解的结构:非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)

参考资料:非齐次线性方程组_百度百科


已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式