求由曲面围成立体的质心. z=x^2+y^2,z=1,z=2,密度u=1;

 我来答
天罗网17
2022-08-14 · TA获得超过6181个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:72.5万
展开全部
这个立体的几何体是一个圆台,上底面半径是√2,下底面半径是1,高度是1.体积为V=1/3*π*((√2)^2*(2+√2)-1^2*(√2+1))=(√2+3)π/3设圆台质量为m,则密度为m/V,因为圆台关于z轴对称,所以质心在z轴上,设质心距坐标原点h...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式