十字相乘法怎么计算?
我们要把二次项拆成两个因式的积,
常数项拆成两个常数的积,然后十字图案交叉相乘,若合并后的结果为一次项,说明分解正确,再把每一行写在一个括号里相乘即可。若合并后的结果不是一次项,需要重新调整尝试。举例如下:
例:x²_6x+5(二次项系数为1的情形)
x - 5
_ _
_ _
x _1
交叉相乘并相加得:
_x_5x=-6x等于一次项
说明分解正确
∴x²_6x+5=(x_5)(x_1)
(把每行写在一个括号里即可)
扩展资料
十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说。
这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
参考资料来源:百度百科-十字相乘法