求(a^n-b^n)/(a-b)到a^n-1 + ba^n-2 + b^2a^n-3 +……+b^n-1的推导过程
1个回答
展开全部
a^n-b^n
=a^n-a^(n-1)b+a^(n-1)b-a^(n-2)b^2+a^(n-2)b^2-a^(n-3)b^3+a^(n-3)b^3-……-ab^(n-1)+ab^(n-1)-b^n
=a^(n-1)(a-b)+a^(n-2)b(a-b)+a^(n-3)b^2(a-b)+……+b^(n-1)(a-b)
=(a-b)[a^(n-1)+a^(n-2)b+a^(n-3)b^2+……+b^(n-1)]
所以(a^n-b^n)/(a-b)=a^(n-1)+a^(n-2)b+a^(n-3)b^2+……+b^(n-1)
=a^n-a^(n-1)b+a^(n-1)b-a^(n-2)b^2+a^(n-2)b^2-a^(n-3)b^3+a^(n-3)b^3-……-ab^(n-1)+ab^(n-1)-b^n
=a^(n-1)(a-b)+a^(n-2)b(a-b)+a^(n-3)b^2(a-b)+……+b^(n-1)(a-b)
=(a-b)[a^(n-1)+a^(n-2)b+a^(n-3)b^2+……+b^(n-1)]
所以(a^n-b^n)/(a-b)=a^(n-1)+a^(n-2)b+a^(n-3)b^2+……+b^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询