设f(x)=x^2 sinax ,a>0,则对于n≥1,f^(2n+1) (0)=
1个回答
展开全部
这个运用莱布尼茨公式
f(x)=f1(x)f2(x)
f^n(x)=∑(m=0,n)C(n,m)f1^m(x)f2^(n-m)(x)
所以
f^(2n+1) (0)
=∑(m=0,2n+1)C(2n+1,m)f1^m(x)f2^(2n+1-m)(x)
=C(2n+1,0)f1(x)f2^(2n+1)(x)+C(2n+1,1)f1'(x)f2^(2n)(x)+C(2n+1,2)f1''(x)f2^(2n-1)(x)
令f1(x)=x^2,f2(x)=sinax
代入算就可以了,只有三项,看到前两项都等于0,因为有x,所以只用算最后一项
=2C(2n+1,2)f2^(2n-1)(x)
f(x)=f1(x)f2(x)
f^n(x)=∑(m=0,n)C(n,m)f1^m(x)f2^(n-m)(x)
所以
f^(2n+1) (0)
=∑(m=0,2n+1)C(2n+1,m)f1^m(x)f2^(2n+1-m)(x)
=C(2n+1,0)f1(x)f2^(2n+1)(x)+C(2n+1,1)f1'(x)f2^(2n)(x)+C(2n+1,2)f1''(x)f2^(2n-1)(x)
令f1(x)=x^2,f2(x)=sinax
代入算就可以了,只有三项,看到前两项都等于0,因为有x,所以只用算最后一项
=2C(2n+1,2)f2^(2n-1)(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询