不定积分x^n*lnxdx
展开全部
∫x^n *lnx dx
= 1/(n+1)* ∫lnx dx^(n+1) (分部积分)
= 1/(n+1)* [x^(n+1)*lnx - ∫x^(n+1)dlnx]
= 1/(n+1)* [x^(n+1)*lnx - ∫x^n dx]
= 1/(n+1)* [x^(n+1)*lnx - 1/(n+1) * x^(n+1)] +C
= 1/(n+1)* x^(n+1)* [lnx - 1/(n+1)] +C C任意常数
= 1/(n+1)* ∫lnx dx^(n+1) (分部积分)
= 1/(n+1)* [x^(n+1)*lnx - ∫x^(n+1)dlnx]
= 1/(n+1)* [x^(n+1)*lnx - ∫x^n dx]
= 1/(n+1)* [x^(n+1)*lnx - 1/(n+1) * x^(n+1)] +C
= 1/(n+1)* x^(n+1)* [lnx - 1/(n+1)] +C C任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询