什么是方差和标准差
1个回答
展开全部
问题一:方差,标准差的概念是什么? 标准差(Standard Deviation)
各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准差也被称为标准偏差,或者实验标准差。
关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。
公式如图。
P.S.
在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是总体标准差。在繁体中文的一些地方可能叫做“母体标准差”
因弧有两个定义,用在不同的场合:
如是总体,标准差公式根号内除以n,
如是样本,标准差公式根号内除以(n-1),
因为我们大量接触的是样本,所以普遍使用根号内除以(n-1),
问题二:方差,标准差的概念是什么? 方差和标准差是用来描述一组数据的波动性的(集中还是分散)标准差的平方就是方差。
一、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。
二、标准差 ,中文环境中又常称均方差,但不同于均方误差,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的一组数据,标准差未必相同。
注:方差和标准差是测算离散趋势最重要、最常用的指标。
问题三:方差 标准差 协方差 有什么区别 首先,方差和标准差通常针对一维数据,也即各个数据描述的是同一类事物,比如身高。标准差为方差的算术平方根。方差和标准差用以刻画各个数据与所有数据平均值的靠近程度,它们的取值越小,则各数据同平均值越为接近。
其次,协方差针对二维数据,也即两个维度的数据描述的是不同类事物,比如身高和体重。协方差用以刻画两类数据间的相关程度,其计算公式见下图。若结果为正值,表示两类数据正相关,比如身高越高,体重越大;若结果为负值,表示两类数据负相关,比如身高越高,体重越小;若结果为0,表示两类数据没有关联,比如身高和体重没有明显关系。另外,结果的绝对值越大,对应相关程度越高。
问题四:方差,平方差,标准差的公式是什么? 1、方差是各个数据分别与其平均数之差的平方的和的平均数,用字母D表示。在概率论和数理统计中,方差(Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着重要意义。其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
2、平方差公式(difference of two squares)是数学公式的一种,它属于乘法公式、因式分解及恒等式,被普遍使用。平方差指一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式:a2-b2=(a+b)(a-b)
3、标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,公式如图。
问题五:方差和标准差的公式分别是什么? 40分 方差有两个计算公式:法一: s^2=1/n ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2] � 前x为数据个数,后x为这组数据的平均数,x1、x2、xn等是每个数据 法二: s^2=1/n ×(x1^2 +x2^2 +...+xn^2) -x^2 标准差是方差的平方根,即:s=√1\x ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2].【【不清楚,再问;满意, 请采纳!祝你好运开!!】】
问题六:方差标准差的意义是什么?它们有何特性 1、方差的意义在于反映了一组数据与其平均值的偏离程度;
2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准差也被称为标准偏差,或者实验标准差。
关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。
公式如图。
P.S.
在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是总体标准差。在繁体中文的一些地方可能叫做“母体标准差”
因弧有两个定义,用在不同的场合:
如是总体,标准差公式根号内除以n,
如是样本,标准差公式根号内除以(n-1),
因为我们大量接触的是样本,所以普遍使用根号内除以(n-1),
问题二:方差,标准差的概念是什么? 方差和标准差是用来描述一组数据的波动性的(集中还是分散)标准差的平方就是方差。
一、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。
二、标准差 ,中文环境中又常称均方差,但不同于均方误差,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的一组数据,标准差未必相同。
注:方差和标准差是测算离散趋势最重要、最常用的指标。
问题三:方差 标准差 协方差 有什么区别 首先,方差和标准差通常针对一维数据,也即各个数据描述的是同一类事物,比如身高。标准差为方差的算术平方根。方差和标准差用以刻画各个数据与所有数据平均值的靠近程度,它们的取值越小,则各数据同平均值越为接近。
其次,协方差针对二维数据,也即两个维度的数据描述的是不同类事物,比如身高和体重。协方差用以刻画两类数据间的相关程度,其计算公式见下图。若结果为正值,表示两类数据正相关,比如身高越高,体重越大;若结果为负值,表示两类数据负相关,比如身高越高,体重越小;若结果为0,表示两类数据没有关联,比如身高和体重没有明显关系。另外,结果的绝对值越大,对应相关程度越高。
问题四:方差,平方差,标准差的公式是什么? 1、方差是各个数据分别与其平均数之差的平方的和的平均数,用字母D表示。在概率论和数理统计中,方差(Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着重要意义。其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
2、平方差公式(difference of two squares)是数学公式的一种,它属于乘法公式、因式分解及恒等式,被普遍使用。平方差指一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式:a2-b2=(a+b)(a-b)
3、标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,公式如图。
问题五:方差和标准差的公式分别是什么? 40分 方差有两个计算公式:法一: s^2=1/n ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2] � 前x为数据个数,后x为这组数据的平均数,x1、x2、xn等是每个数据 法二: s^2=1/n ×(x1^2 +x2^2 +...+xn^2) -x^2 标准差是方差的平方根,即:s=√1\x ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2].【【不清楚,再问;满意, 请采纳!祝你好运开!!】】
问题六:方差标准差的意义是什么?它们有何特性 1、方差的意义在于反映了一组数据与其平均值的偏离程度;
2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询