证明f(t)δ (t)=f(0)δ (t)-2f(0)δ(t)+f (0)δ(t)。
1个回答
展开全部
【答案】:[f(t)δ(t)]"=[f(0)δ(t)]"=f(0)δ"(t) ①
又 [f(t)δ(t)]"=[f'(t)δ(t)+f(t)δ'(t)]'=f"(t)δ(t)+f'(t)δ'(t)+f'(t)δ'(t)+f(t)δ"(t)
=f"(0)δ(t)+2f'(t)δ'(t)+f'(t)δ"(t) ②
而 [f'(t)δ(t)]'=f"(t)δ(t)+f'(t)δ'(t)=f'(0)δ'(t)
推得 f'(t)δ'(t)=f'(0)δ'(t)-f"(t)δ(t)=f'(0)δ'(t)-f"(0)δ(t) ③
将③代入②,得
[f(t)δ(t)]"=f"(0)δ(t)+2[f'(0)δ'(t)-f"(0)δ(t)]+f(t)δ"(t)
=2f'(0)δ'(t)-f"(0)δ(t)+f(t)δ"(t) ④
由式①=式④,可得 f(t)δ"(t)=f(0)δ"(t)-2f'(0)δ'(t)+f"(0)δ(t)
又 [f(t)δ(t)]"=[f'(t)δ(t)+f(t)δ'(t)]'=f"(t)δ(t)+f'(t)δ'(t)+f'(t)δ'(t)+f(t)δ"(t)
=f"(0)δ(t)+2f'(t)δ'(t)+f'(t)δ"(t) ②
而 [f'(t)δ(t)]'=f"(t)δ(t)+f'(t)δ'(t)=f'(0)δ'(t)
推得 f'(t)δ'(t)=f'(0)δ'(t)-f"(t)δ(t)=f'(0)δ'(t)-f"(0)δ(t) ③
将③代入②,得
[f(t)δ(t)]"=f"(0)δ(t)+2[f'(0)δ'(t)-f"(0)δ(t)]+f(t)δ"(t)
=2f'(0)δ'(t)-f"(0)δ(t)+f(t)δ"(t) ④
由式①=式④,可得 f(t)δ"(t)=f(0)δ"(t)-2f'(0)δ'(t)+f"(0)δ(t)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询